Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We consider a repeated sequential game between a learner, who plays first, and an opponent who responds to the chosen action. We seek to design strategies for the learner to successfully interact with the opponent. While most previous approaches consider known opponent models, we focus on the setting in which the opponent’s model is unknown. To this end, we use kernel-based regularity assumptions to capture and exploit the structure in the opponent’s response. We propose a novel algorithm for the learner when playing against an adversarial sequence of opponents. The algorithm combines ideas from bilevel optimization and online learning to effectively balance between exploration (learning about the opponent’s model) and exploitation (selecting highly rewarding actions for the learner). Our results include algorithm’s regret guarantees that depend on the regularity of the opponent’s response and scale sublinearly with the number of game rounds. Moreover, we specialize our approach to repeated Stackelberg games, and empirically demonstrate its effectiveness in a traffic routing and wildlife conservation task.
Volkan Cevher, Efstratios Panteleimon Skoulakis, Luca Viano
Efstratios Panteleimon Skoulakis
Alcherio Martinoli, Cyrill Silvan Baumann, Jonas Perolini, Emna Tourki