We analyse deterministic aggregative games, with large but finite number of players, that are subject to both local and coupling constraints. Firstly, we derive sufficient conditions for the existence of a generalized Nash equilibrium, by using the theory of variational inequalities together with the specific structure of the objective functions and constraints. Secondly, we present a coordination scheme, belonging to the class of asymmetric projection algorithms, and we prove that it converges R-linearly to a generalized Nash equilibrium. To this end, we extend the available results on asymmetric projection algorithms to our setting. Finally, we show that the proposed scheme can be implemented in a decentralized fashion and it is suitable for the analysis of large populations. Our theoretical results are applied to the problem of charging a fleet of plug-in electric vehicles, in the presence of capacity constraints coupling the individual demands.
Christophe Ballif, Alejandro Pena Bello, Noémie Alice Yvonne Ségolène Jeannin, Jérémy Dumoulin
, ,