Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Helium gases are utilized to remove fission products from the molten salt fast reactor (MSFR) core during operation. Helium gases and other volatile fission products may be introduced into the intermediate heat exchanger channels. The effect of these gases on heat transfer is essential for the MSFR to operate properly, especially in laminar flow regimes. The computational fluid dynamics code PSI-BOIL was selected to examine this problem because of its interface tracking capability. A periodic square duct simulation created the flow regime, resulting in a sliding bubble regime. Following that, we examined the impact of heat transfer using an extended nonperiodic channel simulation with a succession of corner bubble arrays. Due to the combined effects of low thermal diffusivity and laminar flow characteristics, it is shown that the length of heat transfer augmentation may extend to at least five bubble diameters downstream of the bubble placement. Finally, we examined the impact of interphasic heat transfer between an inert gas and a liquid. The bulk of the heat transfer amplification effect was due to the motion of the bubbles rather than interphasic heat transfer.
Andreas Pautz, Vincent Pierre Lamirand, Oskari Ville Pakari
Andreas Pautz, Mathieu Hursin, Daniel Jerôme Siefman