Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Objective Long-term automatic detection of focal seizures remains one of the major challenges in epilepsy due to the unacceptably high number of false alarms from state-of-the-art methods. Our aim was to investigate to what extent a new patient-specific approach based on similarly occurring morphological electroencephalographic (EEG) signal patterns could be used to distinguish seizures from nonseizure events, as well as to estimate its maximum performance. Methods We evaluated our approach on >5500 h of long-term EEG recordings using two public datasets: the PhysioNet.org Children’s Hospital Boston–Massachusetts Institute of Technology (CHB-MIT) Scalp EEG database and the EPILEPSIAE European epilepsy database. We visually identified a set of similarly occurring morphological patterns (seizure signature) seen simultaneously over two different EEG channels, and within two randomly selected seizures from each individual. The same seizure signature was then searched for in the entire recording from the same patient using dynamic time warping (DTW) as a similarity metric, with a threshold set to reflect the maximum sensitivity our algorithm could achieve without false alarm. Results At a DTW threshold providing no false alarm during the entire recordings, the mean seizure detection sensitivity across patients was 84%, including 96% for the CHB-MIT database and 74% for the European epilepsy database. A 100% sensitivity was reached in 50% of patients, including 79% from the CHB-MIT database and 27% from the European epilepsy database. The median latency from seizure onset to its detection was 17 ± 10 s, with 84% of seizures being detected within 40 s. Significance Personalized EEG signature combined with DTW appears to be a promising method to detect ictal events from a limited number of EEG channels with high sensitivity despite low rate of false alarms, high degree of interpretability, and low computational complexity, compatible with its future use in wearable devices.
David Atienza Alonso, Giovanni Ansaloni, José Angel Miranda Calero, Jonathan Dan, Amirhossein Shahbazinia, Flavio Ponzina