Publication

Additive manufacturing of ceramics by two-photon lithography, volumetric 3D printing and high-resolution endo-printing.

Georgia Konstantinou
2022
EPFL thesis
Abstract

Additive manufacturing is a growing sector of industrial production that allows the fabrication of parts with complex geometries and reduced waste. The context of this thesis is light-based additive manufacturing technologies. In the first part of the thesis, we explore the micro-fabrication of a highly viscous, preceramic resin with a commercially available two-photon 3D-printer. The micro-additive manufacturing of ceramics with a preceramic polymer formulation was successfully achieved. We report on the printing parameters of the preceramic polymer and pyrolysis conditions that ensured a ceramic conversion with minimum deformation and shrinkage without cracks and porosity. In the second part of the thesis, a complete set-up of a fiber endo-printer is presented that yields smooth objects with submicrometer lateral resolution. We introduce a transmission matrix method for scanning and tuning the size of the focused spot and adjust the fabrication speed. We include an exposure dose correction, which significantly improves the surface quality of the print. In the third part of the thesis, we explore centimeter scale fabrication of a preceramic resin formulation with a volumetric tomographic printing technology that allows to produce support-free, complex shapes, more challenging to produce with a conventional layer-by-layer printing technology. We report on the details of the pre-processing and post-processing steps, including formulation protocol, printing parameters and pyrolysis step that produces a high-fidelity ceramic object.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
3D printing
3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer control, with material being added together (such as plastics, liquids or powder grains being fused), typically layer by layer. In the 1980s, 3D printing techniques were considered suitable only for the production of functional or aesthetic prototypes, and a more appropriate term for it at the time was rapid prototyping.
Waste
Waste (or wastes) are unwanted or unusable materials. Waste is any substance discarded after primary use, or is worthless, defective and of no use. A by-product, by contrast is a joint product of relatively minor economic value. A waste product may become a by-product, joint product or resource through an invention that raises a waste product's value above zero. Examples include municipal solid waste (household trash/refuse), hazardous waste, wastewater (such as sewage, which contains bodily wastes (feces and urine) and surface runoff), radioactive waste, and others.
Pyrolysis
The pyrolysis (or devolatilization) process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere. Temperature can be understood as thermal vibration. At high temperatures, excessive vibration causes long chain molecules to break into smaller molecules. The word is coined from the Greek-derived elements pyro "fire", "heat", "fever" and lysis "separating". Pyrolysis is most commonly used in the treatment of organic materials. It is one of the processes involved in charring wood.
Show more
Related publications (36)

Towards edible robots and robotic food

Dario Floreano, Bokeon Kwak, Markéta Pankhurst, Jun Shintake

Edible robots and robotic food — edible systems that perceive, process and act upon stimulation — could open a new range of opportunities in health care, environmental management and the promotion of healthier eating habits. For example, they could enable ...
2024

Multimaterial Volumetric Printing of Silica-Based Glasses

Christophe Moser, Paul Delrot, Jorge Andres Madrid Wolff, Damien Claude-Marie Loterie, Antoine Vincent Boniface, Roberto Arturo Emma

Silicate glasses have played a major role as structural and functional materials in human civilization since ancient Egypt. Despite their widespread use and importance in modern society, silica glasses with complex geometries are only fabricated in automat ...
Hoboken2024

Large-Scale Hollow-Core 3D Printing: Variable Cross-Section and Printing Features for Lightweight Plastic Elements

Hollow-core 3D printing (HC3DP) proposes a new method for the production of lightweight, material-efficient thermoplastic 3D printed elements. This new fabrication approach promises material savings of 50-80%, while increasing the extrusion rate significan ...
Mary Ann Liebert, Inc2024
Show more
Related MOOCs (5)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.