Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The sedimentation process in an active suspension is the result of the competition between gravity and the autonomous motion of particles. We carry out simulations of run-and-tumble squirmers that move in a fluid medium, focusing on the dependence of the non-equilibrium steady state on the swimming properties. We find that for large enough activity, the density profiles are no longer simple exponentials; we recover the numerical results through the introduction of a local effective temperature, suggesting that the breakdown of the Perrin-like exponential form is a collective effect due to fluid-mediated dynamic correlations among particles. We show that analogous concepts can also fit the case of active non-motile particles, for which we report the first study of this kind. Moreover, we provide evidence of scenarios where the solvent hydrodynamics induces non-local effects which require the full three-dimensional dynamics to be taken into account in order to understand sedimentation in active suspensions. Finally, analyzing the statistics of the orientations of microswimmers, the emergence of a height-dependent polar order in the system is discussed.
Sophia Haussener, Esther Amstad, Gaia De Angelis, Sangram Ashok Savant, Swarnava Nandy
Cristina Ramona Cudalbu, Dunja Simicic