Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Alfven eigenmode (AE) instabilities driven by alpha-particles have been observed in D-He-3 fusion experiments on the Joint European Torus (JET) with the ITER-like wall. For the efficient generation of fusion alpha-particles from D-He-3 fusion reaction, the three-ion radio frequency scenario was used to accelerate the neutral beam injection 100 keV deuterons to higher energies in the core of mixed D-He-3 plasmas at high concentrations of He-3. A large variety of fast-ion driven magnetohydrodynamic modes were observed, including the elliptical Alfven eigenmodes (EAEs) with mode numbers n = -1 and axisymmetric modes with n = 0 in the frequency range of EAEs. The simultaneous observation of these modes indicates the presence of rather strong alpha-particle population in the plasma with a 'bump-on-tail' shaped velocity distribution. Linear stability analysis and Fokker-Planck calculations support the observations. Experimental evidence of the AEs excitation by fusion-born alpha-particles in the D-He-3 plasma is provided by neutron and gamma-ray diagnostics as well as fast-ion loss measurements. We discuss an experimental proposal for the planned full-scale D-T plasma experiments on JET based on the physics insights gained from these experiments.
Haomin Sun, Javier García Hernández, Mikhail Maslov, Matteo Fontana
Haomin Sun, Michele Marin, Javier García Hernández, Mikhail Maslov