Publication

DepthInSpace: Exploitation and Fusion of Multiple Video Frames for Structured-Light Depth Estimation

François Fleuret, Camilla Carta
2021
Conference paper
Abstract

We present DepthInSpace, a self-supervised deep-learning method for depth estimation using a structured-light camera. The design of this method is motivated by the commercial use case of embedded depth sensors in nowadays smartphones. We first propose to use estimated optical flow from ambient information of multiple video frames as a complementary guide for training a single-frame depth estimation network, helping to preserve edges and reduce over-smoothing issues. Utilizing optical flow, we also propose to fuse the data of multiple video frames to get a more accurate depth map. In particular, fused depth maps are more robust in occluded areas and incur less in flying pixels artifacts. We finally demonstrate that these more precise fused depth maps can be used as self-supervision for fine-tuning a single-frame depth estimation network to improve its performance. Our models' effectiveness is evaluated and compared with state-of-the-art models on both synthetic and our newly introduced real datasets.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.