Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Heterostructures involving two-dimensional/three-dimensional (2D/3D) perovskites have recently attracted increased attention due to their ability to combine the high photovoltaic performance of 3D perovskites with the increased stability of 2D perovskites. Here we report ammonium thiocyanate (NH4SCN) passivated 3D methylammonium lead triiodide (MAPbI(3)) perovskite active layer and deposition of 2D perovskite capping layer using xylylene diammonium iodide (XDAI) organic cation. The 2D/3D perovskite heterojunction formation is probed by using FESEM and UPS spectroscopy. The NH4SCN passivated MAPbI(3) perovskite has shown 19.6% PCE compared to the 17.18% PCE of pristine MAPbI(3) perovskite solar cells (PSCs). Finally, the champion 2D/3D perovskite heterojunction based solar cells have achieved the remarkable PCE of 20.74%. The increased PCE in 2D/3D PSCs is mainly attributed to the reduced defect density and suppressed nonradiative recombination losses. Moreover, the hydrophobic 2D capping layer endows the 2D/3D heterojunction perovskites with exceptional moisture, thermal and UV stability, highlighting the promise of highly stable and efficient 2D/3D PSCs.
Mohammad Khaja Nazeeruddin, Peng Gao, Paramaguru Ganesan
Bin Ding, Xianfu Zhang, Bo Chen, Yan Liu
Mohammad Khaja Nazeeruddin, Jianxing Xia, Muhammad Sohail