Publication

Improved Inference On Risk Measures For Univariate Extremes

Anthony Christopher Davison
2022
Journal paper
Abstract

We discuss the use of likelihood asymptotics for inference on risk measures in univariate extreme value problems, focusing on estimation of high quantiles and similar summaries of risk for uncertainty quantification. We study whether higher-order approximation, based on the tangent exponential model, can provide improved inferences. We conclude that inference based on maxima is generally robust to mild model misspecification and that profile likelihood-based confidence intervals will often be adequate, whereas inferences based on threshold exceedances can be badly biased but may be improved by higher-order methods, at least for moderate sample sizes. We use the methods to shed light on catastrophic rainfall in Venezuela, flooding in Venice, and the lifetimes of Italian semisupercentenarians.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.