Publication

Uncertainty-aware Flexibility Envelope Prediction in Buildings with Controller-agnostic Battery Models

Abstract

Buildings are a promising source of flexibility for the application of demand response. In this work, we introduce a novel battery model formulation to capture the state evolution of a single building. Being fully data-driven, the battery model identification requires one dataset from a period of nominal controller operation, and one from a period with relative flexibility requests, without making any assumptions on the underlying, but fixed, controller structure. We consider parameter uncertainty in the model formulation and show how to use risk measures to encode risk preferences of the user in robust uncertainty sets. Finally, we demonstrate the uncertainty-aware prediction of flexibility envelopes for a building simulation model from the Python library Energym.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.