Publication

Flow Time Scheduling and Prefix Beck-Fiala

Abstract

We relate discrepancy theory with the classic scheduling problems of minimizing max flow time and total flow time on unrelated machines. Specifically, we give a general reduction that allows us to transfer discrepancy bounds in the prefix Beck-Fiala (bounded iota 1-norm) setting to bounds on the flow time of an optimal schedule. Combining our reduction with a deep result proved by Banaszczyk via convex geometry, give guarantees of O(root logn) and O( root logn logp) for max flow time and total flow time, respectively, improving upon the previous best guarantees of O(logn) and O( log n log p). Apart from the improved guarantees, the reduction motivates seemingly easy versions of prefix discrepancy questions: any constant bound on prefix Beck-Fiala where vectors have sparsity two (sparsity one being trivial) would already yield tight guarantees for both max flow time and total flow time. While known techniques solve this case when the entries take values in {-1, 0, 1}, we show that they are unlikely to transfer to the more general 2-sparse case of bounded iota 1-norm.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (25)
Flow network
In graph theory, a flow network (also known as a transportation network) is a directed graph where each edge has a capacity and each edge receives a flow. The amount of flow on an edge cannot exceed the capacity of the edge. Often in operations research, a directed graph is called a network, the vertices are called nodes and the edges are called arcs. A flow must satisfy the restriction that the amount of flow into a node equals the amount of flow out of it, unless it is a source, which has only outgoing flow, or sink, which has only incoming flow.
Max-flow min-cut theorem
In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink. This is a special case of the duality theorem for linear programs and can be used to derive Menger's theorem and the Kőnig–Egerváry theorem.
Reduction (complexity)
In computability theory and computational complexity theory, a reduction is an algorithm for transforming one problem into another problem. A sufficiently efficient reduction from one problem to another may be used to show that the second problem is at least as difficult as the first. Intuitively, problem A is reducible to problem B, if an algorithm for solving problem B efficiently (if it existed) could also be used as a subroutine to solve problem A efficiently. When this is true, solving A cannot be harder than solving B.
Show more
Related publications (32)

OASIS: An integrated optimisation framework for activity scheduling

Janody Pougala

Activity-based models offer the potential for a far deeper understanding of daily mobility behaviour than trip-based models. Based on the fundamental assumption that travel demand is derived from the need to do activities, they are flexible tools that aim ...
EPFL2024

Tensor-Based Numerical Method For Stochastic Homogenization

This paper addresses the complexity reduction of stochastic homogenization of a class of random materials for a stationary diffusion equation. A cost-efficient approximation of the correctors is obtained using a method designed to exploit quasi-periodicity ...
SIAM PUBLICATIONS2022

Stochastic distributed learning with gradient quantization and double-variance reduction

Sebastian Urban Stich, Konstantin Mishchenko

We consider distributed optimization over several devices, each sending incremental model updates to a central server. This setting is considered, for instance, in federated learning. Various schemes have been designed to compress the model updates in orde ...
TAYLOR & FRANCIS LTD2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.