**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Lars Rohwedder

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Related units (1)

Related research domains (1)

Problem solving

Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an a

Related publications (4)

Loading

Loading

Loading

Courses taught by this person

People doing similar research (125)

No results

Lars Rohwedder, Ola Nils Anders Svensson

We relate discrepancy theory with the classic scheduling problems of minimizing max flow time and total flow time on unrelated machines. Specifically, we give a general reduction that allows us to transfer discrepancy bounds in the prefix Beck-Fiala (bounded iota 1-norm) setting to bounds on the flow time of an optimal schedule. Combining our reduction with a deep result proved by Banaszczyk via convex geometry, give guarantees of O(root logn) and O( root logn logp) for max flow time and total flow time, respectively, improving upon the previous best guarantees of O(logn) and O( log n log p). Apart from the improved guarantees, the reduction motivates seemingly easy versions of prefix discrepancy questions: any constant bound on prefix Beck-Fiala where vectors have sparsity two (sparsity one being trivial) would already yield tight guarantees for both max flow time and total flow time. While known techniques solve this case when the entries take values in {-1, 0, 1}, we show that they are unlikely to transfer to the more general 2-sparse case of bounded iota 1-norm.

Adam Teodor Polak, Lars Rohwedder

Knapsack and Subset Sum are fundamental NP-hard problems in combinatorial optimization. Recently there has been a growing interest in understanding the best possible pseudopolynomial running times for these problems with respect to various parameters. In this paper we focus on the maximum item size s and the maximum item value v. We give algorithms that run in time O(n + s³) and O(n + v³) for the Knapsack problem, and in time Õ(n + s^{5/3}) for the Subset Sum problem. Our algorithms work for the more general problem variants with multiplicities, where each input item comes with a (binary encoded) multiplicity, which succinctly describes how many times the item appears in the instance. In these variants n denotes the (possibly much smaller) number of distinct items. Our results follow from combining and optimizing several diverse lines of research, notably proximity arguments for integer programming due to Eisenbrand and Weismantel (TALG 2019), fast structured (min,+)-convolution by Kellerer and Pferschy (J. Comb. Optim. 2004), and additive combinatorics methods originating from Galil and Margalit (SICOMP 1991).

Weighted flow time is a fundamental and very well-studied objective function in scheduling. In this paper, we study the setting of a single machine with preemptions. The input consists of a set of jobs, characterized by their processing times, release times, and weights and we want to compute a (possibly preemptive) schedule for them. The objective is to minimize the sum of the weighted flow times of the jobs, where the flow time of a job is the time between its release date and its completion time. It had been a long-standing open problem to find a polynomial time O(1)-approximation algorithm for this setting. In a recent break-through result, Batra, Garg, and Kumar (FOCS 2018) found such an algorithm if the input data are polynomially bounded integers, and Feige, Kulkarni, and Li (SODA 2019) presented a black-box reduction to this setting. The resulting approximation ratio is a (not explicitly stated) constant which is at least 10000. In this paper we improve this ratio to 2 + epsilon. The algorithm by Batra, Garg, and Kumar (FOCS 2018) reduces the problem to DEMAND MULTICUT ON TREES and solves the resulting instances via LP-rounding and a dynamic program. Instead, we first reduce the problem to a (different) geometric problem while losing only a factor 1 + epsilon, and then solve its resulting instances up to a factor of 2 + epsilon by a dynamic program. In particular, our reduction ensures certain structural properties, thanks to which we do not need LP-rounding methods. We believe that our result makes substantial progress towards finding a PTAS for weighted flow time on a single machine.