Publication

Analytical 1D transfer functions for layered soils

Abstract

Transfer functions are constantly used in both Seismology and Geotechnical Earthquake Engineering to relate seismic ground motion at different depths within strata. In the context of diffusive theory, they also appear in the expression of the imaginary part of 1D Green's functions. In spite of their remarkable importance, their mathematical structure is not fully understood yet, except in the simplest cases of two or three layers at most. This incomplete understanding, in particular as to the effect of increasing number of layers, hinders progress in some areas, as researchers have to resort to expensive and less conclusive numerical parametric studies. This text presents the general form of transfer functions for any number of layers, overcoming the above issues. The mathematical structure of these transfer functions comes defined as a superposition of independent harmonics, whose number, amplitudes and periods we fully characterize in terms of the properties of the layers in closed-form. Owing to the formal connection between seismic wave propagation and other phenomena that, in essence, represent different instances of wave propagation in a linear-elastic medium, we have extended the results derived elsewhere, in the context of longitudinal wave propagation in modular rods, to seismic response of stratified sites. The ability to express the reciprocal of transfer functions as a superposition of independent harmonics enables new analytical approaches to assess the effect of each layer over the overall response. The knowledge of the general closed-form expression of the transfer functions allows to analytically characterize the long-wavelength asymptotics of the horizontal-to-vertical spectral ratio for any number of layers.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Longitudinal wave
Longitudinal waves are waves in which the vibration of the medium is parallel to the direction the wave travels and displacement of the medium is in the same (or opposite) direction of the wave propagation. Mechanical longitudinal waves are also called compressional or compression waves, because they produce compression and rarefaction when traveling through a medium, and pressure waves, because they produce increases and decreases in pressure.
Surface wave
In physics, a surface wave is a mechanical wave that propagates along the interface between differing media. A common example is gravity waves along the surface of liquids, such as ocean waves. Gravity waves can also occur within liquids, at the interface between two fluids with different densities. Elastic surface waves can travel along the surface of solids, such as Rayleigh or Love waves. Electromagnetic waves can also propagate as "surface waves" in that they can be guided along with a refractive index gradient or along an interface between two media having different dielectric constants.
Wave
In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a traveling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave.
Show more
Related publications (80)

Optimization of elastic wave propagation in a reconfigurable medium by genetic algorithms with adaptive mutation probability

Romain Christophe Rémy Fleury, Janez Rus

We introduce a reconfigurable medium for the manipulation of elastic propagation properties of Lamb waves. It is based on a shape memory polymer (SMP) with temperature-dependent Young's modulus. Waves are excited by a laser pulse and detected by a laser vi ...
IOP Publishing Ltd2023

Experimental study on velocity distributions, secondary currents, and coherent structures in open channel flow with submerged riparian vegetation

Haoran Shi

Riparian vegetation, which is commonly found in natural rivers and open channels, has a strong influence on flow structures. This paper describes a laboratory experiment on velocity distributions, secondary currents, and coherent structures in narrow open- ...
ELSEVIER SCI LTD2023

Geotechnical Engineering in the Digital and Technological Innovation Era

The book collects the keynote contributions and the papers presented at the “8th Italian Conference of Researchers in Geotechnical Engineering 2023, CNRIG’23”. The conference was held on July 5–7, 2023, at the University of Palermo (Italy), and it was orga ...
Springer Cham2023
Show more
Related MOOCs (5)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.