Publication

Variational dynamics as a ground-state problem on a quantum computer

Abstract

We propose a variational quantum algorithm to study the real-time dynamics of quantum systems as a ground -state problem. The method is based on the original proposal of Feynman and Kitaev to encode time into a register of auxiliary qubits. We prepare the Feynman-Kitaev Hamiltonian acting on the composed system as a qubit operator and find an approximate ground state using the variational quantum eigensolver. We apply the algorithm to the study of the dynamics of a transverse-field Ising chain with an increasing number of spins and time steps, proving a favorable scaling in terms of the number of two-qubit gates. Through numerical experiments, we investigate its robustness against noise, showing that the method can be used to evaluate dynamical properties of quantum systems and detect the presence of dynamical quantum phase transitions by measuring Loschmidt echoes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.