Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This paper considers the problem of enhancing user privacy in common machine learning development tasks, such as data annotation and inspection, by substituting the real data with samples form a generative adversarial network. We propose employing Bayesian differential privacy as the means to achieve a rigorous theoretical guarantee while providing a better privacy-utility trade-off. We demonstrate experimentally that our approach produces higher-fidelity samples, compared to prior work, allowing to (1) detect more subtle data errors and biases, and (2) reduce the need for real data labelling by achieving high accuracy when training directly on artificial samples.
Jean-Philippe Thiran, Tobias Kober, Bénédicte Marie Maréchal, Jonas Richiardi
Rachid Guerraoui, Martin Jaggi, Anastasiia Koloskova, Youssef Allouah, Aymane El Firdoussi