Publication

Exploiting Kinematic Redundancy for Robotic Grasping of Multiple Objects

Aude Billard, Kunpeng Yao
2023
Journal paper
Abstract

Humans coordinate the abundant degrees of freedom (DoFs) of hands to dexterously perform tasks in everyday life. We imitate human strategies to advance the dexterity of multi-DoF robotic hands. Specifically, we enable a robot hand to grasp multiple objects by exploiting its kinematic redundancy, referring to all its controllable DoFs. We propose a human-like grasp synthesis algorithm to generate grasps using pairwise contacts on arbitrary opposing hand surface regions, no longer limited to fingertips or hand inner surface. To model the available space of the hand for grasp, we construct a reachability map, consisting of reachable spaces of all finger phalanges and the palm. It guides the formulation of a constrained optimization problem, solving for feasible and stable grasps. We formulate an iterative process to empower robotic hands to grasp multiple objects in sequence. Moreover, we propose a kinematic efficiency metric and an associated strategy to facilitate exploiting kinematic redundancy. We validated our approaches by generating grasps of single and multiple objects using various hand surface regions. Such grasps can be successfully replicated on a real robotic hand.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (21)
Robot
A robot is a machine—especially one programmable by a computer—capable of carrying out a complex series of actions automatically. A robot can be guided by an external control device, or the control may be embedded within. Robots may be constructed to evoke human form, but most robots are task-performing machines, designed with an emphasis on stark functionality, rather than expressive aesthetics.
Robotics
Robotics is an interdisciplinary branch of electronics and communication, computer science and engineering. Robotics involves the design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics engineering, electronics, biomedical engineering, computer engineering, control systems engineering, software engineering, mathematics, etc.
Robot end effector
In robotics, an end effector is the device at the end of a robotic arm, designed to interact with the environment. The exact nature of this device depends on the application of the robot. In the strict definition, which originates from serial robotic manipulators, the end effector means the last link (or end) of the robot. At this endpoint, the tools are attached. In a wider sense, an end effector can be seen as the part of a robot that interacts with the work environment.
Show more
Related publications (37)

Exploration-based model learning with self-attention for risk-sensitive robot control

Sudong Lee

Model-based reinforcement learning for robot control offers the advantages of overcoming concerns on data collection and iterative processes for policy improvement in model-free methods. However, both methods use exploration strategy relying on heuristics ...
2023

Learning and optimization of anticipatory feedback controllers for robot manipulation

Hakan Girgin

Programming intelligent robots requires robust controllers that can achieve desired tasks while adapting to the changes in the task and the environment. In this thesis, we address the challenges in designing such adaptive and anticipatory feedback controll ...
EPFL2023

Liquid Metal-Based Sensor Skin Enabling Haptic Perception of Softness

Stéphanie Lacour, Ivan Furfaro, Emilio Fernández Lavado, Haotian Chen

Haptic perception of softness is a unique feature of the human skin that relies on the concurrent measurements of the lateral deformation and compression of the skin during object manipulation. This is challenging to implement in robotics because of combin ...
2023
Show more
Related MOOCs (11)
Thymio: un robot pour se former à l'informatique
On propose dans ce MOOC de se former à et avec Thymio : apprendre à programmer le robot Thymio et ce faisant, s’initier à l'informatique et la robotique.
The Thymio robot as a tool for discovering digital science
This MOOC teaches basic understanding of robots’ mechanisms and Thymio’s programming languages, classroom use and pedagogical elements.
The Thymio robot as a tool for discovering digital science
This MOOC teaches basic understanding of robots’ mechanisms and Thymio’s programming languages, classroom use and pedagogical elements.
Show more