Publication

Predicting nonlinear optical scattering with physics-driven neural networks

Abstract

Deep neural networks trained on physical losses are emerging as promising surrogates for nonlinear numerical solvers. These tools can predict solutions to Maxwell's equations and compute gradients of output fields with respect to the material and geometrical properties in millisecond times which makes them attractive for inverse design or inverse scattering applications. Here we develop a tunable version of MaxwellNet with respect to incident power, a physics driven neural network able to compute light scattering from inhomogenous media with a size comparable with the incident wavelength in the presence of the optical Kerr effect. MaxwellNet maps the relation between the refractive index and scattered field through a convolutional neural network. We introduce here extra fully connected layers to dynamically adjust the convolutional kernels to take into account the intensity-dependent refractive index of the material. Finally, we provide an example of how this network can be used for the topology optimization of microlenses that is robust to perturbations due to self-focusing.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Artificial neural network
Artificial neural networks (ANNs, also shortened to neural networks (NNs) or neural nets) are a branch of machine learning models that are built using principles of neuronal organization discovered by connectionism in the biological neural networks constituting animal brains. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons.
Deep learning
Deep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.
Convolutional neural network
Convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns feature engineering by itself via filters (or kernel) optimization. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by using regularized weights over fewer connections. For example, for each neuron in the fully-connected layer 10,000 weights would be required for processing an image sized 100 × 100 pixels.
Show more
Related publications (55)

Generalization of Scaled Deep ResNets in the Mean-Field Regime

Volkan Cevher, Grigorios Chrysos, Fanghui Liu

Despite the widespread empirical success of ResNet, the generalization properties of deep ResNet are rarely explored beyond the lazy training regime. In this work, we investigate scaled ResNet in the limit of infinitely deep and wide neural networks, of wh ...
2024

Error assessment of an adaptive finite elements-neural networks method for an elliptic parametric PDE

Marco Picasso, Alexandre Caboussat, Maude Girardin

We present a finite elements-neural network approach for the numerical approximation of parametric partial differential equations. The algorithm generates training data from finite element simulations, and uses a data -driven (supervised) feedforward neura ...
Lausanne2024

Deep Learning Generalization with Limited and Noisy Labels

Mahsa Forouzesh

Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
EPFL2023
Show more
Related MOOCs (11)
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Show more