Publication

3D Characterisation of Turbulent Plasma Filaments Using Gas Puff Imaging in the Tokamak à Configuration Variable

Nicola Offeddu
2023
Thèse EPFL
Résumé

A key challenge for the development of fusion reactors based on magnetic confinement, such as tokamaks and stellarators, is the control of the turbulent processes. The most prominent feature of turbulence in the Scrape-Off Layer (SOL), the volume between the main core plasma and the vessel wall, are filaments, also known as blobs. Besides influencing particle and energy confinement, filaments pose a severe threat to plasma-facing components in the reactor. The mechanisms governing SOL filaments, particularly their dependence on SOL conditions and geometry, are not yet fully understood, and extrapolations to future devices are challenging. To study plasma turbulence and filaments in the SOL of the Tokamak à Configuration Variable (TCV) at EPFL, in collaboration with MIT-PSFC, we designed, commissioned, and employed a Gas Puff Imaging (GPI) diagnostic. Here, we present this new diagnostic to explore the cross-field dynamics of outboard midplane filaments. We describe the light detection and the innovative control systems for D2 and He gas injection, which is currently also being adopted as the default gas injection scheme at TCV. Furthermore, we present and compare different analysis techniques to measure the filament properties, such as size, velocity, and appearance frequency, and discuss the scenarios in which these techniques are best applied.With GPI, we characterise the poloidal and parallel properties of turbulent filaments in both attached and detached divertor conditions across a wide range of plasma core densities (for Greenwald fractions ranging from 0.09 to 0.66) in diverted L-mode plasma configurations. Filament radial velocities and sizes increase with increasing core density (from 390m/s to 800m/s and from 8.5mm to 13.4mm). Interpreting the filament behaviour in the context of the two-region model by Myra et al., Phys. Plasmas, 2006, they are found to populate the ideal-interchange regime (Ci) in discharges at very low densities (fG ≲0.2) and the resistive X-point regime (RX) for all other discharges. The measured size and velocity scalings confirm this interpretation. Correlating the signal from various diagnostics, precisely aligned along the magnetic field in the SOL (GPI, wall-embedded Langmuir probes, and a reciprocating divertor probe), we study the parallel extension of filaments. In agreement with the theory, we find that filaments in the Ci and RX regimes extend from the midplane into the divertor region in the far SOL. However, in the near SOL, unlike RX filaments, Ci filaments are found to be disconnected at the X-point. This effect is ascribed to magnetic shear having a stronger impact on the smaller and hotter filaments in the C i regime, compared to the larger and colder ones in the RX regime. Following these findings, we explore how filamentary turbulence is affected by magnetic geometry. We present initial experiments in which the effect of alternative divertor geometries on upstream filaments is investigated. These indicate that the position of a secondary X-point in snowflake and X-point target divertor configurations can affect filament cross-field size and velocity, as long as the parallel connection length is significantly altered. Also linked to strong variations in parallel connection length, almost full suppression of filaments is observed in plasmas with strongly negative core shapes. This has potentially important implications for the prospects of negative triangularity as a reactor solution.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Fusion par confinement magnétique
La fusion par confinement magnétique (FCM) est une méthode de confinement utilisée pour porter une quantité de combustible aux conditions de température et de pression désirées pour la fusion nucléaire. De puissants champs électromagnétiques sont employés pour atteindre ces conditions. Le combustible doit au préalable être converti en plasma, celui-ci se laisse ensuite influencer par les champs magnétiques. Il s'agit de la méthode utilisée dans les tokamaks toriques et sphériques, les stellarators et les machines à piège à miroirs magnétiques.
Énergie de fusion nucléaire
vignette| L'expérience de fusion magnétique du Joint European Torus (JET) en 1991. L'énergie de fusion nucléaire est une forme de production d'électricité du futur qui utilise la chaleur produite par des réactions de fusion nucléaire. Dans un processus de fusion, deux noyaux atomiques légers se combinent pour former un noyau plus lourd, tout en libérant de l'énergie. De telles réactions se produisent en permanence au sein des étoiles. Les dispositifs conçus pour exploiter cette énergie sont connus sous le nom de réacteurs à fusion nucléaire.
Tokamak
thumb|Vue intérieure du tore du Tokamak à configuration variable (TCV), dont les parois sont recouvertes de tuiles de graphite. Un tokamak est un dispositif de confinement magnétique expérimental explorant la physique des plasmas et les possibilités de produire de l'énergie par fusion nucléaire. Il existe deux types de tokamaks aux caractéristiques sensiblement différentes, les tokamaks traditionnels toriques (objet de cet article) et les tokamaks sphériques.
Afficher plus
Publications associées (91)

Experimental study and interpretative modelling of the Power Exhaust in Configurations with Multiple X-Points in TCV

Sophie Danielle Angelica Gorno

Nuclear fusion presents a promising clean energy source to mitigate future energy crises, with magnetic confinement fusion well-positioned to provide a baseload scenario to power future reactors. The unmitigated power exhaust of such reactors threatens its ...
EPFL2024

Global fluid simulations of plasma turbulence in stellarators

António João Caeiro Heitor Coelho

In order to cope with the decarbonization challenge faced by many countries, fusion is one of the few alternatives to fossil fuels for the production of electricity. Two devices invented in the middle of the previous century have emerged as the most promis ...
EPFL2024

Experiments and gyrokinetic simulations of TCV plasmas with negative triangularity in view of DTT operations

Olivier Sauter, Stefano Coda, Justin Richard Ball, Alberto Mariani, Matteo Vallar, Filippo Bagnato

Negative triangularity (NT) scenarios in TCV have been compared to positive triangularity (PT) scenarios using the same plasma shapes foreseen for divertor tokamak test tokamak operations. The experiments provided a NT/PT L-mode pair and a PT H-mode with d ...
Iop Publishing Ltd2024
Afficher plus
MOOCs associés (7)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.