Publication

Measuring the electron energy distribution in tokamak plasmas from polarized electron cyclotron radiation

Résumé

In this doctoral thesis, a promising technique has been used for the measurement of non-thermal electrons in TCV. The technique employs a Vertical viewing ECE to more easily discriminate the radiation according to the energy of the electrons. Successful measurements using the Vertical ECE were achieved, for the last time on a tokamak, several decades ago. That is due, among other reasons, to a major limitation that emerged from the early attempts in the 19801980s: that of the refraction of the line of sight of the ECE antenna in the plasma. The refraction, which increases with electron density, shifts the antenna's line of sight and allows the detection of the tokamak's background radiation via multiple wall reflections.The Vertical ECE antenna, designed and installed on TCV, produces a beam of maximum waist size 3\sim 3 cm, for measurements in the frequency range from 7878 to 148148 GHz.Early simulations, to determine the extent of the refraction issue on TCV, constrained the maximum operational density to ne<1×1019m3n_{\mathrm{e}} < 1\times 10 ^{19} \mathrm{m}^{-3} . This result drastically reduced the operational window of the diagnostic until an innocent discovery came in to change the game. In reality, refraction causes trouble only if the background radiation originates within the plasma. As far as TCV is concerned, the background radiation originates essentially from the X22 component of the ECE. A suitable combination of magnetic field ((which varies on TCV from 0.90.9 to 1.51.5 T)) and measured frequencies allows to keep the origin of the background radiation away from the plasma, thus reducing, almost entirely, the level of background radiation. This observation, which unleashed the potential of the Vertical ECE on TCV, also made it possible to exploit the plasma itself, in approximately 7070 ohmic discharges, for the calibration of the diagnostic. The calibration is based on the calculation of the X33 radiation intensity under the conditions of low optical thickness, and is validated against the plasma black-body radiation.It is therefore with a calibrated diagnostic system, and a relaxed window of operation, that we have been able to measure the radiation from non-thermal electrons in some generated non-Maxwellian distributions. These measurements of X and O polarizations were achieved in ECCD and runaway electron scenarios at very high temporal resolution, in the order of 10μs\sim 10 \mu s .In ECCD scenarios, the great flexibility of the ECH power on TCV has been exploited, sometimes by varying the ECH launcher angles in full firing to allow increasingly energetic electrons to drive the current. For the runaways, the measurements were carried out during simple scenarios, at high plasma current (Ip200(I_{\mathrm{p}} \sim 200 kA)) and densities below 1×1019m3 1\times 10 ^{19 } \mathrm{m}^{-3}.Particularly interesting were the measurements of runaways with MGI, or in the presence of ECCD. In agreement with other diagnostics, the Vertical ECE has allowed the observation of a reduction of the runaway emission intensity in the presence of ECCD. In this doctoral thesis, a clear identification of the emission from non-thermal electrons could thus be achieved and attempts were made to reconstruct their energy distribution. The reconstruction shows enhancements in the parallel or perpendicular directions for the different scenarios. Concerning the runaways, the reconstruction of the distribution allowed the observation of a flat

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (33)
Rayonnement ionisant
vignette|Pouvoir de pénétration (exposition externe).Le rayonnement alpha (constitué de noyaux d'hélium) est arrêté par une simple feuille de papier.Le rayonnement bêta (constitué d'électrons ou de positons) est arrêté par une plaque d'aluminium.Le rayonnement gamma, constitué de photons très énergétiques, est atténué (et non arrêté) quand il pénètre de la matière dense, ce qui le rend particulièrement dangereux pour les organismes vivants.Il existe d'autres types de rayonnements ionisants.
Rayonnement de fond
Le rayonnement ambiant () est le rayonnement ionisant omniprésent auquel les gens sur la planète Terre sont exposés. Ce rayonnement provient de sources naturelles et artificielles. La composition et l'intensité des deux rayonnements ambiants (naturel et artificiel) varient selon l'emplacement et l'altitude. Les matières radioactives sont présentes dans la nature. Des quantités détectables de ces matières se trouvent naturellement dans le sol, les roches, l'eau, l'air et la végétation, à partir desquels elles sont inhalées et ingérées dans le corps.
Rayonnement
Le rayonnement est le processus d'émission ou de propagation d'énergie et de quantité de mouvement impliquant une onde ou une particule. On peut distinguer les rayonnements corpusculaires (ou particulaires) par le type de particule auquel ils sont associés. Il peut par exemple s'agir de neutrons, de protons, d'électrons (ou de positrons), de particules alpha, de photons, de neutrinos ou de muons. Il existe également des rayonnements ondulatoires, exemples : rayonnement électromagnétique (rayons X, lumière visible, etc.
Afficher plus
Publications associées (93)

Benign termination of runaway electron beams on ASDEX Upgrade and TCV

Basil Duval, Stefano Coda, Joan Decker, Umar Sheikh, Claudia Colandrea, Luke Simons, Jean Arthur Cazabonne, Bernhard Sieglin, Gergely Papp

This paper discusses the development of a benign termination scenario for runaway electron (RE) beams on ASDEX Upgrade and TCV. A systematic study revealed that a low electron density (n e) companion plasma was required to achieve a large MHD instability, ...
Bristol2024

Radiation Patterns of RF Wireless Devices Implanted in Small Animals: Unexpected Deformations Due to Body Resonance

Anja Skrivervik, Stéphanie Lacour, Zvonimir Sipus, Mingxiang Gao, German Augusto Ramirez Arroyave, Kangling Wu

One challenge in designing RF wireless bioelectronic devices is the impact of the interaction between electromagnetic waves and host body tissues on far-field wireless performance. In this paper, we investigate a peculiar phenomenon of implantable RF wirel ...
2023

Hints of the Photonic Nature of the Electromagnetic Fields in Classical Electrodynamics

Marcos Rubinstein

Several recent publications show that the electromagnetic radiation generated by transmitting antennas satisfy the following universal conditions: The time domain radiation fields satisfy the condition A ≥ h/4π ⇒ q ≥ e where A is the action of the radiatio ...
2023
Afficher plus
MOOCs associés (27)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.