Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Understanding the behavior of surfactants at interfaces is crucial for many applications in materials science and chemistry. Optical tweezers combined with trajectory analysis can become a powerful tool for investigating surfactant characteristics. In this study, we perform trap-and-track analysis to compare the behavior of cetyltrimethylammonium bromide (CTAB) and cetyltrimethylammonium chloride (CTAC) at water–glass interfaces. We use optical tweezers to trap a gold nanoparticle and statistically analyze the particle’s movement in response to various surfactant concentrations, evidencing the rearrangement of surfactants adsorbed on glass surfaces. Our results show that counterions have a significant effect on surfactant behavior at the interface. The greater binding affinity of bromide ions to CTA+ micelle surfaces reduces the repulsion among surfactant head groups and enhances the mobility of micelles adsorbed on the interface. Our study provides valuable insights into the behavior of surfactants at interfaces and highlights the potential of optical tweezers for surfactant research. The development of this trap-and-track approach can have important implications for various applications, including drug delivery and nanomaterials.
,