Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The European Roadmap to Fusion Electricity (Federici et al., 2018) [1] details the path to complete within the next three decades the DEMOnstration power plant, DEMO, aiming to a net gain of Energy Q=40. The 2018 DEMO baseline considers a 2 GW tokamak device, a target performance of 6 T on the plasma, with a major radius of 9 m. Considering the plasma aspect ratio and elongation, and the radial build of the thermal shield, the outer radius of the TFC inner leg is about 4.3 m. In the current designs, the TFC winding pack operates in a range of B = 12-13 T and is based on low temperature superconductors (LTS). As an alternative, High Temperature Superconductors (HTS) could be employed to extend the coil operation beyond the typical J/T/B range of Nb3Sn. The rationale behind the exploration of a fully HTS or Hybrid HTS/LTS design of the TFC Winding Pack (WP) is twofold: on the one hand, it is possible to maintain the target performance of the machine redesigning the radial build of each magnet as a function of a more efficient cable in terms of critical current density; on the other hand, it is possible to keep the machine power constant, increasing the field on the plasma axis, and consequently define a new radial build. This work presents and describes a combined algorithm implemented to enhance the DEMO magnet systems and optimize the DTT central solenoid, capable of accounting for the main electromagnetic and structural constraints, and consistently reshape the machine.
, ,