Résumé
A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting electromagnets, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings. They are used in MRI instruments in hospitals, and in scientific equipment such as NMR spectrometers, mass spectrometers, fusion reactors and particle accelerators. They are also used for levitation, guidance and propulsion in a magnetic levitation (maglev) railway system being constructed in Japan. During operation, the magnet windings must be cooled below their critical temperature, the temperature at which the winding material changes from the normal resistive state and becomes a superconductor, which is in the cryogenic range far below room temperature. The windings are typically cooled to temperatures significantly below their critical temperature, because the lower the temperature, the better superconductive windings work—the higher the currents and magnetic fields they can stand without returning to their non-superconductive state. Two types of cooling systems are commonly used to maintain magnet windings at temperatures sufficient to maintain superconductivity: Liquid helium is used as a coolant for many superconductive windings. It has a boiling point of 4.2 K, far below the critical temperature of most winding materials. The magnet and coolant are contained in a thermally insulated container (dewar) called a cryostat. To keep the helium from boiling away, the cryostat is usually constructed with an outer jacket containing (significantly cheaper) liquid nitrogen at 77 K.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.