Publication

Nature-Inspired Stalactite Nanopores for Biosensing and Energy Harvesting

Abstract

Nature provides a wide range of self-assembled structures from the nanoscale to the macroscale. Under the right thermodynamic conditions and with the appropriate material supply, structures like stalactites, icicles, and corals can grow. However, the natural growth process is time-consuming. This work demonstrates a fast, nature-inspired method for growing stalactite nanopores using heterogeneous atomic deposition of hafnium dioxide at the orifice of templated silicon nitride apertures. The stalactite nanostructures combine the benefits of reduced sensing region typically for 2-dimensional material nanopores with the asymmetric geometry of capillaries, resulting in ionic selectivity, stability, and scalability. The proposed growing method provides an adaptable nanopore platform for basic and applied nanofluidic research, including biosensing, energy science, and filtration technologies.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.