Publication

Processing load, and not stimulus evidence, determines the duration of unconscious visual feature integration

Abstract

Integration across space and time is essential for the analysis of motion, low contrast, and many more stimuli. A crucial question is what determines the duration of integration. Based on classical models of decision-making, one might expect that integration terminates as soon as sufficient evidence about a stimulus is accumulated and a threshold is crossed. However, there is very little research on this question as most experimental paradigms cannot monitor processing following stimulus presentation. In particular, it is difficult to determine when processing terminates. Here, using the sequential metacontrast paradigm (SQM), in which information is mandatorily integrated along motion trajectories, we show that the processing load determines the extent of integration but that evidence accumulation does not. Further, the extent of integration is determined by absolute time instead of the number of elements presented. These results have important implications for understanding the time course and mechanisms of temporal integration.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Stimulus–response model
The stimulus–response model is a characterization of a statistical unit (such as a neuron). The model allows the prediction of a quantitative response to a quantitative stimulus, for example one administered by a researcher. In psychology, stimulus response theory forms classical conditioning in which a stimulus becomes a paired response in a subject's mind. Stimulus–response models are applied in international relations, psychology, risk assessment, neuroscience, neurally-inspired system design, and many other fields.
Motion
In physics, motion is the phenomenon by which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an observer, measuring the change in position of the body relative to that frame with a change in time. The branch of physics describing the motion of objects without reference to their cause is called kinematics, while the branch studying forces and their effect on motion is called dynamics.
Trajectory
A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete trajectory is defined by position and momentum, simultaneously. The mass might be a projectile or a satellite. For example, it can be an orbit — the path of a planet, asteroid, or comet as it travels around a central mass. In control theory, a trajectory is a time-ordered set of states of a dynamical system (see e.
Show more
Related publications (33)

Microgravity induces overconfidence in perceptual decision-making

Davide Scaramuzza, Christian Pfeiffer, Leyla Loued-Khenissi

Does gravity affect decision-making? This question comes into sharp focus as plans for interplanetary human space missions solidify. In the framework of Bayesian brain theories, gravity encapsulates a strong prior, anchoring agents to a reference frame via ...
NATURE PORTFOLIO2023

From finger animation to full-body embodiment of avatars with different morphologies and proportions

Mathias Guy Delahaye

VR (Virtual Reality) is a real-time simulation that creates the subjective illusion of being in a virtual world.This thesis explores how integrating the user's body and fingers can be achieved and beneficial for the user to experience VR.At the advent of V ...
EPFL2023

How long does stimulus processing last?

Michael Herzog, Leila Drissi Daoudi - Kleinbauer

How a stimulus is processed is at the very heart of all vision research. However, there is only little research about how long the processing of a stimulus lasts. One reason is that visual processing is often explicitly or implicitly thought to be feedforw ...
2021
Show more
Related MOOCs (6)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.