Publication

Anisotropic In-Plane strain engineering Ni(OH)2 to activate alkaline hydrogen evolution reaction

Kangning Zhao, Yi Yang, Chao Yang
2023
Journal paper
Abstract

Realizing a hydrogen economy strongly requires alkaline water electrolysis to achieve large-scale generation of H2, but lacks stable and efficient catalysts. The insufficient active sites in Ni(OH)2 impair the catalytic performance of alkaline HER. Herein, trivalent Al3+ is introduced to tune the in-plane anistropical strain of Ni(OH)2, optimizing the electronic structure of the basal plane to provide more active sites for enhanced alkaline HER performance. DFT calculation reveals that the in-plane strain through Al3+ facilitates the adsorption energy of H*, reduces the HER energy barrier, and adjusts the Volmer process. As a result, the optimized catalyst exhibits efficient HER catalytic performance at an overpotential of 190 mV to drive 100 mA cm-2 along with the low Tafel slope of 48 mV dec-1 in alkaline solution. The anisotropic in-plane strain engineering strategy highlights the importance of atomic engineering on the HER catalysts.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.