Publication

Nonperturbative aspects of scattering amplitudes

Résumé

In this thesis we study how physical principles imposed on the S-matrix, such as Lorentz invariance, unitarity, crossing symmetry and analyticity constrain quantum field theories at the nonperturbative level. We start with a pedagogical introduction to the S-matrix bootstrap and showcase some basic consequences, such as the Froissart bound on the total cross-section. We then more carefully revisit and extend old results from 1960s including an interesting relation between large spin, low energy data and Landau singularities. We revisit the Aks theorem asserting the necessity of particle production in relativistic scattering in d>2d > 2. We establish the nonperturbative support for the spectral density, which is needed for a double dispersive representation of the scattering amplitude (or Mandelstam representation). This is a result of an extensive Landau and graph-theoretical analysis in which the leading inelastic Landau curves are determined and in particular an infinite subclass of these curves are found to accumulate at finite energies. We also consider the scattering of heavier particles where so-called anomalous thresholds are present. We show that anomalous thresholds are a consequence of the aforementioned principles and a key extra assumption: analyticity in the mass. We find a nonperturbative formula for the imaginary part across the anomalous threshold which, in particular, is shown \emph{not} to be positive definite. Finally, we add form factors and spectral densities of local operators to the bootstrap setup, such as the stress-energy tensor. This let us include information about the UV conformal field theory and allows to better target certain quantum field theories such as Ising field theory.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.