Publication

Wind farm power density optimization according to the area size using a novel self-adaptive genetic algorithm

Abstract

This work studies the power density (PD) optimization in wind farms, and its sensitivity to the available area size. A novel genetic algorithm (PDGA) is introduced, which optimizes PD and the turbine layout, by self-adapting to the PD and to the solutions diversity. PDGA uses the levelized cost of energy (LCOE) as cost function, which in turn employs the EPFL analytical wake model to derive the power output. For the baseline area size, PDGA reduces 2.25% the original LCOE, 2.6 times more than optimizing with constant PD. PDGA-driven solutions provide 11% and 6% LCOE reductions against the default layout for the smallest (6.4 km2) and largest (386 km2) scaled wind farm areas, respectively. Specially relevant for the industry, PDGA solutions depict convex fronts for area vs. LCOE or vs. PD, which allows determining the required area or turbine number given a target LCOE. Unlike default layouts, optimized ones reveal a linear relationship between LCOE and PD. The mean turbine spacing tends to 8-9D for very large areas. The economics-optimized PDs are below the estimated PD available in the atmosphere. This work is limited to a simplified, offshore wind climatology, a specific wind turbine model, and the LCOE specifications used herein.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.