L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble.
L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Beaucoup de systèmes susceptibles d’être décrits par un modèle mathématique sont optimisés. La qualité des résultats et des prédictions dépend de la pertinence du modèle, du bon choix des variables que l'on cherche à optimiser, de l’efficacité de l’algorithme et des moyens pour le traitement numérique.
Les premiers problèmes d'optimisation auraient été formulés par Euclide, au avant notre ère, dans son ouvrage historique Éléments. Trois cents ans plus tard, Héron d'Alexandrie dans Catoptrica énonce le « principe du plus court chemin » dans le contexte de l'optique (voir figure).
Au , l'apparition du calcul différentiel entraîne l'invention de techniques d'optimisation, ou du moins en fait ressentir la nécessité. Newton met au point une méthode itérative permettant de trouver les extrémums locaux d'une fonction en faisant intervenir la notion de dérivée, issue de ses travaux avec Leibniz.
Cette nouvelle notion permet de grandes avancées dans l'optimisation de fonctions car le problème est ramené à la recherche des racines de la dérivée.
Durant le , les travaux des mathématiciens Euler et Lagrange mènent au calcul des variations, une branche de l'analyse fonctionnelle regroupant plusieurs méthodes d'optimisation.
Ce dernier invente une technique d'optimisation sous contraintes : les multiplicateurs de Lagrange.