Publication

The Advection Boundary Law in presence of mean-flow and spinning modes

2024
Conference proceedings
Abstract

In the attempt to reduce fuel consumption, a new generation of Ultra-High-By-Pass-Ratio (UHBR) turbofans have been introduced in the aeronautic industry which are structurally noisier especially at lower frequencies, because of their larger diameter, lower number of blades and rotational speed. Moreover, they present a shorter nacelle, leaving less available space for acoustic treatments. For this reason, innovation in the liner technology is highly demanded. In this contribution, we analyse the performances of an electroacoustic liner, made up of microphones (sensors) and small loudspeakers (actuators). Such array of electroacoustic resonators can feature an interesting boundary operator, called Advection Boundary Law. Such boundary law has been analysed in grazing-incident acoustic fields without air-flow and in case of plane waves. Here, we adapt such boundary condition to attenuate spinning modes. Numerical simulations in case of spinning-modes, shows the potentiality and the passivity issues of such innovative boundary law. Finally, a reproduction of a turbofan engine (scale 1:3) accomplishing real-life rotational speeds, allows to assess the performances of the Advection Boundary Law in presence of mean-flow and spinning-modes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Robin boundary condition
In mathematics, the Robin boundary condition (ˈrɒbɪn; properly ʁɔbɛ̃), or third type boundary condition, is a type of boundary condition, named after Victor Gustave Robin (1855–1897). When imposed on an ordinary or a partial differential equation, it is a specification of a linear combination of the values of a function and the values of its derivative on the boundary of the domain. Other equivalent names in use are Fourier-type condition and radiation condition.
Cauchy boundary condition
In mathematics, a Cauchy (koʃi) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin-Louis Cauchy.
Boundary layer
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition (zero velocity at the wall). The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer.
Show more
Related publications (52)

An interior penalty coupling strategy for isogeometric non-conformal Kirchhoff-Love shell patches

Annalisa Buffa, Pablo Antolin Sanchez, Giuliano Guarino

This work focuses on the coupling of trimmed shell patches using Isogeometric Analysis, based on higher continuity splines that seamlessly meet the C 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackag ...
Springer2024

Exponential convergence to steady-states for trajectories of a damped dynamical system modeling adhesive strings

Nicola De Nitti

We study the global well-posedness and asymptotic behavior for a semilinear damped wave equation with Neumann boundary conditions, modeling a one-dimensional linearly elastic body interacting with a rigid substrate through an adhesive material. The key fea ...
World Scientific Publ Co Pte Ltd2024

Smart Acoustic Lining for UHBR Technologies Engine Part 1: Design of an Electroacoustic Liner and Experimental Characterization Under Flow in Rectangular Cross-Section Ducts

Hervé Lissek, Maxime Volery

The new generation of Ultra-High-By-Pass-Ratio (UHBR) turbofan engine while considerably reducing fuel consumption, threatens higher noise levels at low frequencies because of its larger diameter, lower number of blades and rotational speed. This is accomp ...
American Institute of Aeronautics and Astronautics2024
Show more
Related MOOCs (8)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more