Publication

Study of impurity C transport and plasma rotation in negative triangularity on the TCV tokamak

Abstract

Carbon impurity transport is studied in the TCV tokamak using a charge exchange recombination diagnostic. TCVs flexible shaping capabilities were exploited to extend previous impurity transport studies to negative triangularity (delta < 0). A practical way of studying light impurity transport (like C, TCVs main impurity species due to graphite tiled walls) is to investigate the correlations between the impurity ion gradients that, in this study, highlighted significant differences between positive (PT) and negative delta (NT) plasma configurations. delta scans ( - 0.6 < delta < + 0.6 ) were performed in limited configurations, but displayed little correlation between C temperature, rotation and density gradients for positive delta. This stiff response for delta > 0 changes for negative delta, where the evolution of del(vtor) was accompanied by variations of del(nC) over a range of negative delta, showing that transport, in NT, is affected by velocity gradients. Similar delta scans were performed with additional NBH (Neutral Beam Heating), with power steps ranging from 0.25 MW to 1.25 MW, highlighting increased momentum confinement in negative delta. Finally, the evolution of intrinsic plasma toroidal rotation across linear to saturated ohmic confinement regime (LOC/SOC) transitions was explored at delta < 0, expanding previous studies performed in TCV for delta > 0 (Bagnato et al 2023 Nucl. Fusion 63 056006). Toroidal rotation reversal was not observed for delta < 0, despite clear LOC/SOC transitions, confirming that these two phenomena occur concomitantly only in a restricted number of cases and under specific conditions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Tokamak
A tokamak (ˈtoʊkəmæk; токамáк) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. , it was the leading candidate for a practical fusion reactor. Tokamaks were initially conceptualized in the 1950s by Soviet physicists Igor Tamm and Andrei Sakharov, inspired by a letter by Oleg Lavrentiev. The first working tokamak was attributed to the work of Natan Yavlinsky on the T-1 in 1958.
Fusion power
Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2023, no device has reached net power. Fusion processes require fuel and a confined environment with sufficient temperature, pressure, and confinement time to create a plasma in which fusion can occur.
Magnetic confinement fusion
Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with inertial confinement fusion. The magnetic approach began in the 1940s and absorbed the majority of subsequent development. Fusion reactions combine light atomic nuclei such as hydrogen to form heavier ones such as helium, producing energy.
Show more
Related publications (38)

Experiments and gyrokinetic simulations of TCV plasmas with negative triangularity in view of DTT operations

Olivier Sauter, Stefano Coda, Justin Richard Ball, Alberto Mariani, Matteo Vallar, Filippo Bagnato

Negative triangularity (NT) scenarios in TCV have been compared to positive triangularity (PT) scenarios using the same plasma shapes foreseen for divertor tokamak test tokamak operations. The experiments provided a NT/PT L-mode pair and a PT H-mode with d ...
Iop Publishing Ltd2024

Physical insights from the aspect ratio dependence of turbulence in negative triangularity plasmas

Stefano Coda, Justin Richard Ball

In this work, we study the impact of aspect ratio A = R 0 / r (the ratio of major radius R 0 to minor radius r) on the confinement benefits of negative triangularity (NT) plasma shaping. We use high-fidelity flux tube gyrokinetic GENE simulations and consi ...
Iop Publishing Ltd2024

An experimental and computational study of tokamak plasma turbulence

Aylwin Iantchenko

Turbulence driven by small-scale instabilities results in strong heat and particle transport, which significantly shortens the confinement time and prevents the formation of a self-sustained plasma reaction in magnetic confinement devices. Control and poss ...
EPFL2023
Show more
Related MOOCs (17)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.