Publication

Wavelet and footprint sampling of signals with a finite rate of innovation

Martin Vetterli, Pier Luigi Dragotti
2004
Conference paper
Abstract

In this paper, we consider classes of not bandlimited signals, namely, streams of Diracs and piecewise polynomial signals, and show that these signals can be sampled and perfectly reconstructed using wavelets as sampling kernel. Due to the multiresolution structure of the wavelet transform, these new sampling theorems naturally lead to the development of a new resolution enhancement algo- rithm based on wavelet footprints [2]. Preliminary results show the potentiality of this algorithm.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.