Publication

The Contourlet Transform: An Efficient Directional Multiresolution Image Representation

Résumé

The limitations of commonly used separable extensions of one-dimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a "true" two-dimensional transform that can capture the intrinsic geometrical structure that is key in visual information. The main challenge in exploring geometry in images comes from the discrete nature of the data. Thus, unlike other approaches, such as curvelets, that first develop a transform in the continuous domain and then discretize for sampled data, our approach starts with a discrete-domain construction and then studies its convergence to an expansion in the continuous domain. Specifically, we construct a discrete-domain multiresolution and multidirection expansion using nonseparable filter banks, in much the same way that wavelets were derived from filter banks. This construction results in a flexible multiresolution, local, and directional image expansion using contour segments, and, thus, it is named the contourlet transform. The discrete contourlet transform has a fast iterated filter bank algorithm that requires an order N operations for N-pixel images. Furthermore, we establish a precise link between the developed filter bank and the associated continuous-domain contourlet expansion via a directional multiresolution analysis framework. We show that with parabolic scaling and sufficient directional vanishing moments, contourlets achieve the optimal approximation rate for piecewise smooth functions with discontinuities along twice continuously differentiable curves. Finally, we show some numerical experiments demonstrating the potential of contourlets in several image processing applications.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.