Publication

Nanoscale structure of poly(ethylene glycol) hybrid block copolymers containing amphiphilic β-strand peptide sequences sequences

Harm-Anton Klok
2003
Journal paper
Abstract

This paper discusses the solid state and melt nanoscale structure of a series of novel poly(ethylene glycol) (PEG) hybrid di- and triblock copolymers, which contain amphiphilic β-strand peptide sequences. The block copolymers have been prepared via solid-phase synthesis, affording perfectly monodisperse peptide segments with a precisely defined α-amino acid sequence. Attenuated total reflection Fourier transform infrared spectroscopy and X-ray scattering experiments indicate that the self-assembly properties of the peptide sequences are retained upon conjugation to PEG and mediate the formation of an ordered superstructure consisting of alternating PEG layers and peptide domains with an highly organized antiparallel β-sheet structure. The results suggest that combination of biological structural motifs with synthetic polymers may be a versatile strategy for the development of novel self-assembled materials with complex internal structures and the potential to interface with biology.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Self-assembly
Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the constitutive components are molecules, the process is termed molecular self-assembly. Self-assembly can be classified as either static or dynamic. In static self-assembly, the ordered state forms as a system approaches equilibrium, reducing its free energy.
Self-assembly of nanoparticles
Nanoparticles are classified as having at least one of three dimensions be in the range of 1-100 nm. The small size of nanoparticles allows them to have unique characteristics which may not be possible on the macro-scale. Self-assembly is the spontaneous organization of smaller subunits to form larger, well-organized patterns. For nanoparticles, this spontaneous assembly is a consequence of interactions between the particles aimed at achieving a thermodynamic equilibrium and reducing the system’s free energy.
Copolymer
In polymer chemistry, a copolymer is a polymer derived from more than one species of monomer. The polymerization of monomers into copolymers is called copolymerization. Copolymers obtained from the copolymerization of two monomer species are sometimes called bipolymers. Those obtained from three and four monomers are called terpolymers and quaterpolymers, respectively. Copolymers can be characterized by a variety of techniques such as NMR spectroscopy and size-exclusion chromatography to determine the molecular size, weight, properties, and composition of the material.
Show more
Related publications (94)

Grand canonical Brownian dynamics simulations of adsorption and self-assembly of SAS-6 rings on a surface

Pierre Gönczy, Niccolo Banterle

The Spindle Assembly Abnormal Protein 6 (SAS-6) forms dimers, which then self-assemble into rings that are critical for the nine-fold symmetry of the centriole organelle. It has recently been shown experimentally that the self-assembly of SAS-6 rings is st ...
AIP Publishing2023

Reinforced Supramolecular Networks of End Functionalized Polymers for Tailored Thermomechanical Property Profiles

Yevhen Hryshunin

Thermoset rubbers give rise to elastomers with tunable stiffness and high resilience but are not recyclable. Thermoplastic elastomers can address this problem but their broad applicability is impeded by either limited operating temperatures or inferior ela ...
EPFL2023

Biotechnological Frontiers of DNA Nanomaterials Continue to Expand: Bacterial Infection using Virus-Inspired Capsids

Maartje Martina Cornelia Bastings

The elegant geometry of viruses has inspired bio-engineers to synthetically explore the self-assembly of polyhedral capsids employed to protect new cargo or change an enzymatic microenvironment. Recently, Yang and co-workers used DNA nanotechnology to revi ...
WILEY-V C H VERLAG GMBH2023
Show more
Related MOOCs (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.