In this paper we develop different mathematical models in the framework of the multi-stream paradigm for noise robust ASR, and discuss their close relationship with human speech perception. Largely inspired by Fletcher's "product-of-errors" rule in psychoacoustics, multi-band ASR aims for robustness to data mismatch through the exploitation of spectral redundancy, while making minimum assumptions about noise type. Previous ASR tests have shown that independent sub-band processing can lead to decreased recognition performance with clean speech. We have overcome this problem by considering every combination of data sub-bands as an independent data stream. After introducing the background to multi-band ASR, we show how this "full combination" approach can be formalised, in the context of HMM/ANN based ASR, by introducing a latent variable to specify which data sub-bands in each data frame are free from data mismatch. This enables us to decompose the posterior probability for each phoneme into a reliability weighted integral over all possible positions of clean data. This approach offers great potential for adaptation to rapidly changing and unpredictable noise.
Hervé Lissek, Gilles André Courtois, Vincent Pierre Olivier Grimaldi