Publication

Thin film piezoelectrics for MEMS

Paul Muralt
2004
Journal paper
Abstract

Thin film piezoelectric materials offer a number of advantages in microelectromechanical systems (MEMS), due to the large motions that can be generated, often with low hysteresis, the high available energy densities, as well as high sensitivity sensors with wide dynamic ranges, and low power requirements. This paper reviews the literature in this field, with an emphasis on the factors that impact the magnitude of the available piezoelectric response. For non-ferroelectric piezoelectrics such as ZnO and AlN, the importance of film orientation is discussed. The high available electrical resistivity in AlN, its compatibility with CMOS processing, and its high frequency constant make it especially attractive in resonator applications. The higher piezoelectric response available in ferroelectric films enables lower voltage operation of actuators, as well as high sensitivity sensors. Among ferroelectric films, the majority of the MEMS sensors and actuators developed have utilized lead zirconate titanate (PZT) films as the transducer. Randomly oriented PZT films show piezoelectric e(31, f) coefficients of about - 7 C/m(2) at the morphotropic phase boundary. In PZT films, orientation, composition, grain size, defect chemistry, and mechanical boundary conditions all impact the observed piezoelectric coefficients. The highest achievable piezoelectric responses can be observed in {001} oriented rhombohedrally-distorted perovskites. For a variety of such films, e(31,f) coefficients of - 12 to - 27 C/m(2) have been reported.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.