Publication

Microscopic aspects of the region-by-region polarization reversal kinetics of polycrystalline ferroelectric Pb(Zr,Ti)O-3 films

Abstract

The region-by-region polarization switching in ferroelectric Pb(Zr,Ti)O-3 thin films sandwiched between Pt electrodes has been directly observed using piezoelectric scanning probe microscopy. A resolution improved by one order-of-magnitude compared to the standard piezoelectric response imaging technique for ferroelectric capacitors was achieved by reducing the top electrode thickness to 10-15 nm through polishing. It was demonstrated that the individually switched regions correspond to single grains or clusters of grains where the grain boundaries act as frontiers limiting the propagation of the switched state. The study of the propagation of the reversed polarization state as a function of voltage applied shows a rather discontinuous growth of the switched areas, the movement of the domain walls being triggered abruptly by different threshold voltages. This result agrees with the earlier proposed nucleation-limited switching model. The observation of the frozen regions that do not switch even at higher voltages provides significant insight into the "bits-failure" problem in submicron ferroelectric capacitors used for nonvolatile memory applications. (C) 2005 American Institute of Physics.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Ferroelectricity
Ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoelectric and pyroelectric, with the additional property that their natural electrical polarization is reversible. The term is used in analogy to ferromagnetism, in which a material exhibits a permanent magnetic moment. Ferromagnetism was already known when ferroelectricity was discovered in 1920 in Rochelle salt by Joseph Valasek.
Piezoelectricity
Piezoelectricity (ˌpiːzoʊ-,_ˌpiːtsoʊ-,_paɪˌiːzoʊ-, piˌeɪzoʊ-,_piˌeɪtsoʊ-) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure and latent heat. It is derived (an ancient source of electric current). The piezoelectric effect results from the linear electromechanical interaction between the mechanical and electrical states in crystalline materials with no inversion symmetry.
Semiconductor memory
Semiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to devices in which data is stored within metal–oxide–semiconductor (MOS) memory cells on a silicon integrated circuit memory chip. There are numerous different types using different semiconductor technologies. The two main types of random-access memory (RAM) are static RAM (SRAM), which uses several transistors per memory cell, and dynamic RAM (DRAM), which uses a transistor and a MOS capacitor per cell.
Show more
Related publications (59)

Impact of Interface Traps in Floating-Gate Memory Based on Monolayer MoS2

Andras Kis, Guilherme Migliato Marega

Two-dimensional materials (2DMs) have found potential applications in many areas of electronics, such as sensing, memory systems, optoelectronics, and power. Despite an intense experimental work, the literature is lacking of accurate modeling of nonvolatil ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2022

Exploring ferroelectricity in HfO2-based thin films by tackling application-relevant challenges

Matteo Cavalieri

Ferroelectric materials offer a broad range of application-relevant properties, including spontaneous polarization switchable by electric field. Archetypical representatives of this class of materials are perovskites, currently used in applications ranging ...
EPFL2021

Intrinsic or nucleation-driven switching: An insight from nanoscopic analysis of negative capacitance Hf1-xZrxO2-based structures

Mihai Adrian Ionescu, Igor Stolichnov, Matteo Cavalieri, Carlotta Gastaldi

HfO2-based ferroelectrics have dramatically changed the application perspectives of polarization-switching materials for information processing and storage. Their CMOS compatibility and preservation of high reversible polarization down to a few nanometer t ...
AMER INST PHYSICS2020
Show more
Related MOOCs (11)
Electronics
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.
Electronics
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.
Electrical Engineering I
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.