Publication

Multiple scattering in optical coherence tomography. I. Investigation and modeling

Abstract

We present a new model of optical coherence tomography (OCT) taking into account multiple scattering. A theoretical analysis and experimental investigation reveals that in OCT, despite multiple scattering, the field backscattered from the sample is generally spatially coherent and that the resulting interference signal with the reference field is stationary relative to measurement time. On the basis of this result, we model an OCT signal as a sum of spatially coherent fields with random-phase arguments-constant during measurement time-caused by multiple scattering. We calculate the mean of such a random signal from classical results of statistical optics and a Monte Carlo simulation. OCT signals predicted by our model are in very good agreement with a depth scan measurement of a sample consisting of a mirror covered with an aqueous suspension of microspheres. We discuss other comprehensive OCT models based on the extended Huygens-Fresnel principle, which rest on the assumption of partially coherent interfering fields. (C) 2005 Optical Society of America.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (36)
Optical coherence tomography
Optical coherence tomography (OCT) is an imaging technique that uses low-coherence light to capture micrometer-resolution, two- and three-dimensional images from within optical scattering media (e.g., biological tissue). It is used for medical imaging and industrial nondestructive testing (NDT). Optical coherence tomography is based on low-coherence interferometry, typically employing near-infrared light. The use of relatively long wavelength light allows it to penetrate into the scattering medium.
Coherence (physics)
In physics, coherence expresses the potential for two waves to interfere. Two monochromatic beams from a single source always interfere. Physical sources are not strictly monochromatic: they may be partly coherent. Beams from different sources are mutually incoherent. When interfering, two waves add together to create a wave of greater amplitude than either one (constructive interference) or subtract from each other to create a wave of minima which may be zero (destructive interference), depending on their relative phase.
Speckle (interference)
Speckle, speckle pattern, or speckle noise is a granular degrading the as a consequence of interference among wavefronts in coherent imaging systems, such as radar, synthetic aperture radar (SAR), medical ultrasound and optical coherence tomography. Speckle is not external noise; rather, it is an inherent fluctuation in diffuse reflections, because the scatterers are not identical for each cell, and the coherent illumination wave is highly sensitive to small variations in phase changes.
Show more
Related publications (54)

3D diffractive optics for linear interconnects and nonlinear processing

Niyazi Ulas Dinç

The optical domain presents potential avenues for enhancing both computing and communication due to its inherentproperties of bandwidth, parallelism, and energy efficiency. This research focuses on harnessing 3-Dimensional (3D)diffractive optics for novel ...
EPFL2024

Tunable acousto-optic optical frequency combs

Andrey Voloshin

Examination of various issues related to the generation and application of optical frequency combs (OFCs) is an important branch of modern optoelectronics. Some of the proposed OFC generation methods apply acousto-optic (AO) devices. The AO devices are use ...
Optica Publishing Group2022

Holographic device or imager

Christophe Moser, Manon Rostykus

The present disclosure concerns a holographic system or device comprising at least one optical guiding element (100) configured to redirect light incident from a light source (101) to a target interference plane (103), wherein the optical guiding element i ...
2018
Show more
Related MOOCs (13)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 2)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.