Startup

Astrocast (fka Else)

Description

Astrocast, formerly known as Else, is a leading global nanosatellite IoT network operator founded in 2014. They offer a cost-effective, bidirectional, and comprehensive Satellite IoT Service to industries such as Maritime, Agriculture & Livestock, Environmental & Utilities, Land Transport, Mining, Oil & Gas, and other IoT industrial applications. Their state-of-the-art nanosatellites in Low Earth Orbit (LEO) provide reliable connectivity with optimized hardware, communication protocol, and network for low-energy operation. Astrocast's technology includes a proprietary low-power L-band chipset integrated into the Astronode S module, which enables bidirectional communication, over-the-air updates, and multilevel AES 256-bit encryption. They also offer a Customer Web Portal for data access and near real-time usage reporting.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Categories (8)
Global Navigation Satellite Systems
A satellite navigation or satnav system is a system that uses satellites to provide autonomous geopositioning. A satellite navigation system with global coverage is termed global navigation satellite system (GNSS). , four global systems are operational: the United States' Global Positioning System (GPS), Russia's Global Navigation Satellite System (GLONASS), China's BeiDou Navigation Satellite System, and the European Union's Galileo.
Embedded systems
An embedded system is a computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use.
Technical geography
Technical geography is the branch of geography that involves using, studying, and creating tools to obtain, analyze, interpret, understand, and communicate spatial information. The other branches, most commonly limited to human geography and physical geography, can usually apply the concepts and techniques of technical geography. However, the methods and theory are distinct, and a technical geographer may be more concerned with the technological and theoretical concepts than the nature of the data.
Computer architecture
In computer science, computer architecture is a description of the structure of a computer system made from component parts. It can sometimes be a high-level description that ignores details of the implementation. At a more detailed level, the description may include the instruction set architecture design, microarchitecture design, logic design, and implementation. The first documented computer architecture was in the correspondence between Charles Babbage and Ada Lovelace, describing the analytical engine.
Earth science
Earth science or geoscience includes all fields of natural science related to the planet Earth. This is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of Earth's four spheres: the biosphere, hydrosphere, atmosphere, and geosphere (or lithosphere). Earth science can be considered to be a branch of planetary science, but with a much older history. There are reductionist and holistic approaches to Earth sciences.
Show more
Related concepts (19)
Internet of things
The Internet of things (IoT) describes devices with sensors, processing ability, software and other technologies that connect and exchange data with other devices and systems over the Internet or other communications networks. The Internet of things encompasses electronics, communication and computer science engineering. Internet of things has been considered a misnomer because devices do not need to be connected to the public internet, they only need to be connected to a network, and be individually addressable.
Low Earth orbit
A low Earth orbit (LEO) is an orbit around Earth with a period of 128 minutes or less (making at least 11.25 orbits per day) and an eccentricity less than 0.25. Most of the artificial objects in outer space are in LEO, with an altitude never more than about one-third of the radius of Earth. The term LEO region is also used for the area of space below an altitude of (about one-third of Earth's radius). Objects in orbits that pass through this zone, even if they have an apogee further out or are sub-orbital, are carefully tracked since they present a collision risk to the many LEO satellites.
Medium Earth orbit
A medium Earth orbit (MEO) is an Earth-centered orbit with an altitude above a low Earth orbit (LEO) and below a high Earth orbit (HEO) – between above sea level. The boundary between MEO and LEO is an arbitrary altitude chosen by accepted convention, whereas the boundary between MEO and HEO is the particular altitude of a geosynchronous orbit, in which a satellite takes 24 hours to circle the Earth, the same period as the Earth’s own rotation.
High Earth orbit
High Earth orbit (HEO) is a region of space around the Earth where satellites and other spacecraft are placed in orbits that are very high above the planet's atmosphere. This area is defined as an altitude higher than 35,786 km (22,236 mi) above sea level, which is the radius of a circular geosynchronous orbit. HEO extends to end of the Earth's sphere of influence. Satellites in HEO are primarily used for communication, navigation, scientific research, and military applications.
Geocentric orbit
A geocentric orbit, Earth-centered orbit, or Earth orbit involves any object orbiting Earth, such as the Moon or artificial satellites. In 1997, NASA estimated there were approximately 2,465 artificial satellite payloads orbiting Earth and 6,216 pieces of space debris as tracked by the Goddard Space Flight Center. More than 16,291 objects previously launched have undergone orbital decay and entered Earth's atmosphere. A spacecraft enters orbit when its centripetal acceleration due to gravity is less than or equal to the centrifugal acceleration due to the horizontal component of its velocity.
Show more
Related courses (5)
EE-585: Space mission design and operations
This course is a "concepts" course. It introduces a variety of concepts to design and operate a space mission. These concepts cover orbital mechanics, spacecraft operation phases and critical subsyste
PHYS-401: Astrophysics IV : stellar and galactic dynamics
The aim of this course is to acquire the basic knowledge on specific dynamical phenomena related to the origin, equilibrium, and evolution of star clusters, galaxies, and galaxy clusters.
EE-582: Lessons learned from the space exploration
The objective of the course is to present with different viewpoints, the lessons learned which lead to the decisions in the space exploration and their consequences today and for the decades to come.
Show more
Related lectures (75)
Space Capabilities WorldwideMOOC: Space Mission Design and Operations
Explores the space capabilities of nations, agencies, and companies in 2015.
Earth OrbitsMOOC: Space Mission Design and Operations
Explores various Earth orbits, historical space missions, and solar system exploration.
Satcom Performances and ConstraintsMOOC: New Space Economy
Explores Satcom performances, bandwidth, orbits, and radio spectrum utilization in satellite communications.
Space Debris: A Growing ThreatMOOC: Space Mission Design and Operations
Explores the challenges posed by space debris accumulation in different orbits and the measures taken to prevent collisions.
Building Physics: Fundamentals and Applications
Explores building physics fundamentals, thermal comfort, architecture projects, and Earth's celestial movements.
Show more
Related MOOCs (2)
Space Mission Design and Operations
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.
Space Mission Design and Operations
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.
Related publications (31)

Microstrip patch antennas with broad beamwidth

Ismael Vico Triviño

Microstrip antennas offer a broad set of advantages such as low profile, light weight, easy fabrication and low cost. As these are desirable or even critical for a broad range of applications, there has been a large interest for these antennas in the anten ...
EPFL2023

Design of an intake and a thruster for an atmosphere-breathing electric propulsion system

Francesco Romano, Thomas Binderup Jensen

Challenging space missions include those at very low altitudes, where the atmosphere is the source of aerodynamic drag on the spacecraft, that finally defines the mission's lifetime, unless a way to compensate for it is provided. This environment is named ...
2022

Biomechanics at the workplace under hypogravity conditions

Tatiana Maillard

The main goal of my research is to establish guidelines for workplace design based on human biomechanics: specifically sitting workplaces and handling areas in 1/6G-1/3G (Moon, Mars) conditions. Such a workplace could be used in long-term space missions in ...
EPFL2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.