Category

Interpretations of quantum mechanics

Summary
An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics might correspond to experienced reality. Although quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily broad range of experiments, there exist a number of contending schools of thought over their interpretation. These views on interpretation differ on such fundamental questions as whether quantum mechanics is deterministic or stochastic, local or non-local, which elements of quantum mechanics can be considered real, and what the nature of measurement is, among other matters. Despite nearly a century of debate and experiment, no consensus has been reached among physicists and philosophers of physics concerning which interpretation best "represents" reality. The definition of quantum theorists' terms, such as wave function and matrix mechanics, progressed through many stages. For instance, Erwin Schrödinger originally viewed the electron's wave function as its charge density smeared across space, but Max Born reinterpreted the absolute square value of the wave function as the electron's probability density distributed across space. The views of several early pioneers of quantum mechanics, such as Niels Bohr and Werner Heisenberg, are often grouped together as the "Copenhagen interpretation", though physicists and historians of physics have argued that this terminology obscures differences between the views so designated. Copenhagen-type ideas were never universally embraced, and challenges to a perceived Copenhagen orthodoxy gained increasing attention in the 1950s with the pilot-wave interpretation of David Bohm and the many-worlds interpretation of Hugh Everett III. The physicist N. David Mermin once quipped, "New interpretations appear every year. None ever disappear." As a rough guide to development of the mainstream view during the 1990s and 2000s, a "snapshot" of opinions was collected in a poll by Schlosshauer et al. at the "Quantum Physics and the Nature of Reality" conference of July 2011.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.