Résumé
En mécanique quantique, les inégalités de Bell, énoncées en 1964 par John Stewart Bell, sont des relations que doivent respecter les mesures sur des états intriqués dans l'hypothèse d'une théorie déterministe locale à variables cachées. Il a été démontré expérimentalement en 1982 qu'elles sont systématiquement violées dans les cas EPR, obligeant à renoncer à une ou plusieurs des trois hypothèses suivantes, sur lesquelles sont fondées les inégalités de Bell : le principe de localité : deux objets distants ne peuvent avoir une influence instantanée l'un sur l'autre, ce qui revient à dire qu'un signal ou une influence ne peut se propager à une vitesse plus grande qu'une vitesse limite, qui se trouve être la vitesse de la lumière dans le vide ; la causalité : l'état des particules est déterminé uniquement par leur expérience, c'est-à-dire leur état initial et l'ensemble des influences reçues dans le passé ; le réalisme qui, dans l'esprit de l'article original de Bell, signifie que les particules individuelles sont des entités qui possèdent des propriétés propres, véhiculées avec elles. Le principe d'incertitude d'Heisenberg exprimant une limite fondamentale dans la précision des mesures simultanées de la vitesse et de la position des particules (entre autres), David Bohm propose en 1951 d'abandonner ces paramètres et d'utiliser à la place des valeurs facilement mesurables, comme le spin. C'est en 1964 que John Bell utilise cette idée et formule une inégalité. Son grand intérêt réside dans le fait que « la physique quantique prédit que cette inégalité peut être violée dans certaines conditions expérimentales, alors que selon la physique classique elle doit toujours être vérifiée ». Il existe plusieurs variantes de l'inégalité de Bell, menant à des expériences différentes. La première expérience indiquant une violation de l'inégalité de Bell a été menée par John Clauser et Stuart Freedman en 1972, mais sa précision était insuffisante pour qu'elle soit concluante.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (12)
COM-611: Quantum Information Theory and Computation
Today one is able to manipulate matter at the nanoscale were quantum behavior becomes important and possibly information processing will have to take into account laws of quantum physics. We introduce
COM-309: Introduction to quantum information processing
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
PHYS-454: Quantum optics and quantum information
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
Afficher plus