Wind engineering is a subset of mechanical engineering, structural engineering, meteorology, and applied physics that analyzes the effects of wind in the natural and the built environment and studies the possible damage, inconvenience or benefits which may result from wind. In the field of engineering it includes strong winds, which may cause discomfort, as well as extreme winds, such as in a tornado, hurricane or heavy storm, which may cause widespread destruction. In the fields of wind energy and air pollution it also includes low and moderate winds as these are relevant to electricity production and dispersion of contaminants.
Wind engineering draws upon meteorology, fluid dynamics, mechanics, geographic information systems, and a number of specialist engineering disciplines, including aerodynamics and structural dynamics. The tools used include atmospheric models, atmospheric boundary layer wind tunnels, and computational fluid dynamics models.
Wind engineering involves, among other topics:
Wind impact on structures (buildings, bridges, towers)
Wind comfort near buildings
Effects of wind on the ventilation system in a building
Wind climate for wind energy
Air pollution near buildings
Wind engineering may be considered by structural engineers to be closely related to earthquake engineering and explosion protection.
Some sports stadiums such as Candlestick Park and Arthur Ashe Stadium are known for their strong, sometimes swirly winds, which affect the playing conditions.
Wind engineering as a separate discipline can be traced to the UK in the 1960s, when informal meetings were held at the National Physical Laboratory, the Building Research Establishment, and elsewhere. The term "wind engineering" was first coined in 1970. Alan Garnett Davenport was one of the most prominent contributors to the development of wind engineering. He is well known for developing the Alan Davenport wind-loading chain or in short "wind-loading chain" that describes how different components contribute to the final load calculated on the structure.