In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.
A topological space is a 3-manifold if it is a second-countable Hausdorff space and if every point in has a neighbourhood that is homeomorphic to Euclidean 3-space.
The topological, piecewise-linear, and smooth categories are all equivalent in three dimensions, so little distinction is made in whether we are dealing with say, topological 3-manifolds, or smooth 3-manifolds.
Phenomena in three dimensions can be strikingly different from phenomena in other dimensions, and so there is a prevalence of very specialized techniques that do not generalize to dimensions greater than three. This special role has led to the discovery of close connections to a diversity of other fields, such as knot theory, geometric group theory, hyperbolic geometry, number theory, Teichmüller theory, topological quantum field theory, gauge theory, Floer homology, and partial differential equations. 3-manifold theory is considered a part of low-dimensional topology or geometric topology.
A key idea in the theory is to study a 3-manifold by considering special surfaces embedded in it. One can choose the surface to be nicely placed in the 3-manifold, which leads to the idea of an incompressible surface and the theory of Haken manifolds, or one can choose the complementary pieces to be as nice as possible, leading to structures such as Heegaard splittings, which are useful even in the non-Haken case.
Thurston's contributions to the theory allow one to also consider, in many cases, the additional structure given by a particular Thurston model geometry (of which there are eight). The most prevalent geometry is hyperbolic geometry. Using a geometry in addition to special surfaces is often fruitful.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
We develop, analyze and implement numerical algorithms to solve optimization problems of the form: min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Rieman
The subject deals with differential geometry and its relation to global analysis, partial differential equations, geometric measure theory and variational principles to name a few.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries (a Kleinian group).
In mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries (Euclidean, spherical, or hyperbolic). In three dimensions, it is not always possible to assign a single geometry to a whole topological space.
William Thurston's elliptization conjecture states that a closed 3-manifold with finite fundamental group is spherical, i.e. has a Riemannian metric of constant positive sectional curvature. A 3-manifold with a Riemannian metric of constant positive sectional curvature is covered by the 3-sphere, moreover the group of covering transformations are isometries of the 3-sphere. If the original 3-manifold had in fact a trivial fundamental group, then it is homeomorphic to the 3-sphere (via the covering map).
We determine the bounded cohomology of the group of homeomorphisms of certain low-dimensional manifolds. In particular, for the group of orientation-preserving homeomorphisms of the circle and of the closed 2-disc, it is isomorphic to the polynomial ring g ...
SPRINGER HEIDELBERG2023
, ,
Predicting the evolution of systems with spatio-temporal dynamics in response to external stimuli is essential for scientific progress. Traditional equations-based approaches leverage first principles through the numerical approximation of differential equ ...
In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for ot ...