In orbital mechanics, a Lissajous orbit (li.sa.ʒu), named after Jules Antoine Lissajous, is a quasi-periodic orbital trajectory that an object can follow around a Lagrangian point of a three-body system with minimal propulsion. Lyapunov orbits around a Lagrangian point are curved paths that lie entirely in the plane of the two primary bodies. In contrast, Lissajous orbits include components in this plane and perpendicular to it, and follow a Lissajous curve. Halo orbits also include components perpendicular to the plane, but they are periodic, while Lissajous orbits are usually not.
In practice, any orbits around Lagrangian points , , or are dynamically unstable, meaning small departures from equilibrium grow over time. As a result, spacecraft in these Lagrangian point orbits must use their propulsion systems to perform orbital station-keeping. Although they are not perfectly stable, a modest effort of station keeping keeps a spacecraft in a desired Lissajous orbit for a long time.
In the absence of other influences, orbits about Lagrangian points and are dynamically stable so long as the ratio of the masses of the two main objects is greater than about 25. The natural dynamics keep the spacecraft (or natural celestial body) in the vicinity of the Lagrangian point without use of a propulsion system, even when slightly perturbed from equilibrium. These orbits can however be destabilized by other nearby massive objects. For example, orbits around the and points in the Earth–Moon system can last only a few million years instead of billions because of perturbations by the other planets in the Solar System.
Spacecraft using Lissajous orbits
Several missions have used Lissajous orbits: ACE at Sun–Earth L1, SOHO at Sun–Earth L1, DSCOVR at Sun–Earth L1, WMAP at Sun–Earth L2, and also the Genesis mission collecting solar particles at L1.
On 14 May 2009, the European Space Agency (ESA) launched into space the Herschel and Planck observatories, both of which use Lissajous orbits at Sun–Earth L2.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A halo orbit is a periodic, three-dimensional orbit near one of the L1, L2 or L3 Lagrange points in the three-body problem of orbital mechanics. Although a Lagrange point is just a point in empty space, its peculiar characteristic is that it can be orbited by a Lissajous orbit or by a halo orbit. These can be thought of as resulting from an interaction between the gravitational pull of the two planetary bodies and the Coriolis and centrifugal force on a spacecraft. Halo orbits exist in any three-body system, e.
In celestial mechanics, the Lagrange points (ləˈɡrɑːndʒ; also Lagrangian points or libration points) are points of equilibrium for small-mass objects under the gravitational influence of two massive orbiting bodies. Mathematically, this involves the solution of the restricted three-body problem. Normally, the two massive bodies exert an unbalanced gravitational force at a point, altering the orbit of whatever is at that point. At the Lagrange points, the gravitational forces of the two large bodies and the centrifugal force balance each other.
Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity, including both spacecraft and natural astronomical bodies such as star systems, planets, moons, and comets.
Chaotic dynamics in systems ranging from low-dimensional nonlinear differential equations to high-dimensional spatiotemporal systems including fluid turbulence is supported by nonchaotic, exactly recurring time-periodic solutions of the governing equations ...
2022
,
One approach to understand the chaotic dynamics of nonlinear dissipative systems is the study of non-chaotic yet dynamically unstable invariant solutions embedded in the system's chaotic attractor. The significance of zero-dimensional unstable fixed points ...
AIP Publishing2022
,
Unstable periodic orbits are believed to underpin the dynamics of turbulence, but by their nature are hard to find computationally. We present a family of methods to converge such unstable periodic orbits for the incompressible Navier-Stokes equations, bas ...