**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Orbital mechanics

Summary

Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control.
Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity, including both spacecraft and natural astronomical bodies such as star systems, planets, moons, and comets. Orbital mechanics focuses on spacecraft trajectories, including orbital maneuvers, orbital plane changes, and interplanetary transfers, and is used by mission planners to predict the results of propulsive maneuvers.
General relativity is a more exact theory than Newton's laws for calculating orbits, and it is sometimes necessary to use it for greater accuracy or in high-gravity situations (e.g. orbits near the Sun).
Until the rise of space travel in the twentieth century, there was little distinction between orbital and celestial mechanics. At the time of Sputnik, the field was termed 'space dynamics'. The fundamental techniques, such as those used to solve the Keplerian problem (determining position as a function of time), are therefore the same in both fields. Furthermore, the history of the fields is almost entirely shared.
Johannes Kepler was the first to successfully model planetary orbits to a high degree of accuracy, publishing his laws in 1605. Isaac Newton published more general laws of celestial motion in the first edition of Philosophiæ Naturalis Principia Mathematica (1687), which gave a method for finding the orbit of a body following a parabolic path from three observations. This was used by Edmund Halley to establish the orbits of various comets, including that which bears his name. Newton's method of successive approximation was formalised into an analytic method by Leonhard Euler in 1744, whose work was in turn generalised to elliptical and hyperbolic orbits by Johann Lambert in 1761–1777.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (58)

Related concepts (50)

Related MOOCs (2)

Related people (12)

Related units (1)

Related courses (24)

Related lectures (127)

Elliptic orbit

In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1 (thus excluding the circular orbit). In a wider sense, it is a Kepler orbit with negative energy. This includes the radial elliptic orbit, with eccentricity equal to 1.

Orbital elements

Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in astronomy and orbital mechanics. A real orbit and its elements change over time due to gravitational perturbations by other objects and the effects of general relativity.

Gravity assist

A gravity assist, gravity assist maneuver, swing-by, or generally a gravitational slingshot in orbital mechanics, is a type of spaceflight flyby which makes use of the relative movement (e.g. orbit around the Sun) and gravity of a planet or other astronomical object to alter the path and speed of a spacecraft, typically to save propellant and reduce expense. Gravity assistance can be used to accelerate a spacecraft, that is, to increase or decrease its speed or redirect its path.

Space Mission Design and Operations

Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.

Space Mission Design and Operations

Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.

EE-585: Space mission design and operations

This course is a "concepts" course. It introduces a variety of concepts in use in the design of a space mission, manned or unmanned, and in space operations. it is partly based on the practical space

EE-584: Spacecraft design and system engineering

The main objective of the course is to learn to apply the fundamentals of space system engineering & design. The course introduces the various phases, systems, & subsystems involved in the design of s

PHYS-646: Insights on magnetic and semiconducting nanostructures

Introduction to the magnetic and electronic properties of nanostructures

Eigenstate Thermalization Hypothesis

Explores the Eigenstate Thermalization Hypothesis in quantum systems, emphasizing the random matrix theory and the behavior of observables in thermal equilibrium.

Laws of Mechanics and Space EnvironmentMOOC: Space Mission Design and Operations

Covers the laws of mechanics, space environment, and space debris observation.

Quantum Mechanics: Energy Levels

Explores quantum mechanics, energy quantization, and wave-particle duality in microscopic systems.

François Gallaire, Alessandro Bongarzone, Alice Evelyne Julienne Marcotte

Resonant sloshing in circular cylinders was studied by Faltinsen et al. (J. Fluid Mech., vol. 804, 2016, pp. 608-645), whose theory was used to describe steady-state resonant waves due to a time-harmonic container's elliptic orbits. In the limit of longitu ...

Stephan Morgenthaler, Shuangqing Liao

Context. We report the exploitation of a sample of Solar System observations based on data from the third Gaia Data Release (Gaia DR3) of nearly 157 000 asteroids. It extends the epoch astrometric solution over the time coverage planned for the Gaia DR4, w ...

Véronique Michaud, Alexandre Achille Looten, Muriel Richard, Antonio Caiazzo

From the recent awareness of the booming number of space debris and their derived worldwide re-entry event threat originating from the use of high survivability components, complementary mitigation measures must be taken for future orbital elements. In thi ...

2023