Sieve theory is a set of general techniques in number theory, designed to count, or more realistically to estimate the size of, sifted sets of integers. The prototypical example of a sifted set is the set of prime numbers up to some prescribed limit X. Correspondingly, the prototypical example of a sieve is the sieve of Eratosthenes, or the more general Legendre sieve. The direct attack on prime numbers using these methods soon reaches apparently insuperable obstacles, in the way of the accumulation of error terms. In one of the major strands of number theory in the twentieth century, ways were found of avoiding some of the difficulties of a frontal attack with a naive idea of what sieving should be.
One successful approach is to approximate a specific sifted set of numbers (e.g. the set of
prime numbers) by another, simpler set (e.g. the set of almost prime numbers), which is typically somewhat larger than the original set, and easier to analyze. More sophisticated sieves also do not work directly with sets per se, but instead count them according to carefully chosen weight functions on these sets (options for giving some elements of these sets more "weight" than others). Furthermore, in some modern applications, sieves are used not to estimate the size of a sifted
set, but to produce a function that is large on the set and mostly small outside it, while being easier to analyze than
the characteristic function of the set.
For information on notation see at the end.
We start with some countable sequence of non-negative numbers . In the most basic case this sequence is just the indicator function of some set we want to sieve. However this abstraction allows for more general situations. Next we introduce a general set of prime numbers called the sifting range and their product up to as a function .
The goal of sieve theory is to estimate the sifting function
In the case of this just counts the cardinality of a subset of numbers, that are coprime to the prime factors of .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
In the field of number theory, the Brun sieve (also called Brun's pure sieve) is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Viggo Brun in 1915 and later generalized to the fundamental lemma of sieve theory by others. In terms of sieve theory the Brun sieve is of combinatorial type; that is, it derives from a careful use of the inclusion–exclusion principle. Let be a finite set of positive integers.
In combinatorics, a branch of mathematics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as where A and B are two finite sets and |S | indicates the cardinality of a set S (which may be considered as the number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice.
Viggo Brun (13 October 1885 – 15 August 1978) was a Norwegian professor, mathematician and number theorist. In 1915, he introduced a new method, based on Legendre's version of the sieve of Eratosthenes, now known as the Brun sieve, which addresses additive problems such as Goldbach's conjecture and the twin prime conjecture. He used it to prove that there exist infinitely many integers n such that n and n+2 have at most nine prime factors, and that all large even integers are the sum of two numbers with at most nine prime factors.
We show that the exponent of distribution of the ternary divisor function d(3) in arithmetic progressions to prime moduli is at least 1/2 + 1/46, improving results of Friedlander-Iwaniec and Heath-Brown. Furthermore, when averaging over a fixed residue cla ...
Hydrodynamics at the nanoscale involves both fundamental study and application of fluid and mass transport phenomena in nanometer-sized confinements. Nanopores in single-layer graphene can be highly attractive for exploring the molecular transport of gas a ...
We propose an efficient variant for the initialisation step of quadratic sieving, the sieving step of the quadratic sieve and its variants, which is also used in sieving-based algorithms for computing class groups of quadratic fields. As an application we ...