Renewable energy commercialization involves the deployment of three generations of renewable energy technologies dating back more than 100 years. First-generation technologies, which are already mature and economically competitive, include biomass, hydroelectricity, geothermal power and heat. Second-generation technologies are market-ready and are being deployed at the present time; they include solar heating, photovoltaics, wind power, solar thermal power stations, and modern forms of bioenergy. Third-generation technologies require continued R&D efforts in order to make large contributions on a global scale and include advanced biomass gasification, hot-dry-rock geothermal power, and ocean energy. As of 2012, renewable energy accounts for about half of new nameplate electrical capacity installed and costs are continuing to fall. Public policy and political leadership helps to "level the playing field" and drive the wider acceptance of renewable energy technologies. Countries such as Germany, Denmark, and Spain have led the way in implementing innovative policies which has driven most of the growth over the past decade. As of 2014, Germany has a commitment to the "Energiewende" transition to a sustainable energy economy, and Denmark has a commitment to 100% renewable energy by 2050. There are now 144 countries with renewable energy policy targets. Renewable energy continued its rapid growth in 2015, providing multiple benefits. There was a new record set for installed wind and photovoltaic capacity (64GW and 57GW) and a new high of US$329 Billion for global renewables investment. A key benefit that this investment growth brings is a growth in jobs. The top countries for investment in recent years were China, Germany, Spain, the United States, Italy, and Brazil. Renewable energy companies include BrightSource Energy, First Solar, Gamesa, GE Energy, Goldwind, Sinovel, Targray, Trina Solar, Vestas, and Yingli. Climate change concerns are also driving increasing growth in the renewable energy industries.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Fossil fuel phase-out
Fossil fuel phase-out is the gradual reduction of the use and production of fossil fuels to zero, to reduce deaths and illness from air pollution, limit climate change, and strengthen energy independence. It is part of the ongoing renewable energy transition. Although many countries are shutting down coal-fired power stations, electricity generation is not moving off coal fast enough to meet climate goals. Many countries have set dates to stop selling petrol and diesel cars and trucks, but a timetable to stop burning fossil gas has not yet been agreed.
Amory Lovins
Amory Bloch Lovins (born November 13, 1947) is an American writer, physicist, and former chairman/chief scientist of the Rocky Mountain Institute. He has written on energy policy and related areas for four decades, and served on the US National Petroleum Council, an oil industry lobbying group, from 2011 to 2018. Lovins has promoted energy efficiency, the use of renewable energy sources, and the generation of energy at or near the site where the energy is actually used.
Renewable heat
Renewable heat is an application of renewable energy referring to the generation of heat from renewable sources; for example, feeding radiators with water warmed by focused solar radiation rather than by a fossil fuel boiler. Renewable heat technologies include renewable biofuels, solar heating, geothermal heating, heat pumps and heat exchangers. Insulation is almost always an important factor in how renewable heating is implemented. Many colder countries consume more energy for heating than for supplying electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.