In combinatorics and computer science, covering problems are computational problems that ask whether a certain combinatorial structure 'covers' another, or how large the structure has to be to do that. Covering problems are minimization problems and usually integer linear programs, whose dual problems are called packing problems.
The most prominent examples of covering problems are the set cover problem, which is equivalent to the hitting set problem, and its special cases, the vertex cover problem and the edge cover problem.
In the context of linear programming, one can think of any linear program as a covering problem if the coefficients in the constraint matrix, the objective function, and right-hand side are nonnegative. More precisely, consider the following general integer linear program:
Such an integer linear program is called a covering problem if for all and .
Intuition: Assume having types of object and each object of type has an associated cost of . The number indicates how many objects of type we buy. If the constraints are satisfied, it is said that is a covering (the structures that are covered depend on the combinatorial context). Finally, an optimal solution to the above integer linear program is a covering of minimal cost.
There are various kinds of covering problems in graph theory, computational geometry and more; see . Other stochastic related versions of the problem can be found.
For Petri nets, for example, the covering problem is defined as the question if for a given marking, there exists a run of the net, such that some larger (or equal) marking can be reached. Larger means here that all components are at least as large as the ones of the given marking and at least one is properly larger.
In some covering problems, the covering should satisfy some additional requirements. In particular, in the rainbow covering problem, each of the original objects has a "color", and it is required that the covering contains exactly one (or at most one) object of each color. Rainbow covering was studied e.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set of vertices such that for every two vertices in , there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in . A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening.
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints.
This course covers numerous powerful algorithmic techniques (greedy, local search, linear programming, multiplicative weight update, ...). The concepts are studied in clean and simple settings so as t
This course provides an overview of advanced techniques for solving large-scale linear algebra problems, as they typically arise in applications. A central goal of this course is to give the ability t
We prove that for any triangle-free intersection graph of n axis-parallel line segments in the plane, the independence number alpha of this graph is at least alpha n/4+ohm(root n). We complement this with a construction of a graph in this class satisfying ...
Knapsack and Subset Sum are fundamental NP-hard problems in combinatorial optimization. Recently there has been a growing interest in understanding the best possible pseudopolynomial running times for these problems with respect to various parameters. In t ...
Schloss Dagstuhl -- Leibniz-Zentrum für Informatik2021
Adjustable robust minimization problems where the objective or constraints depend in a convex way on the adjustable variables are generally difficult to solve. In this paper, we reformulate the original adjustable robust nonlinear problem with a polyhedral ...