Concept

Algebraic normal form

Summary
In Boolean algebra, the algebraic normal form (ANF), ring sum normal form (RSNF or RNF), Zhegalkin normal form, or Reed–Muller expansion is a way of writing propositional logic formulas in one of three subforms: The entire formula is purely true or false: One or more variables are combined into a term by AND (), then one or more terms are combined by XOR () together into ANF. Negations are not permitted: The previous subform with a purely true term: Formulas written in ANF are also known as Zhegalkin polynomials and Positive Polarity (or Parity) Reed–Muller expressions (PPRM). ANF is a canonical form, which means that two logically equivalent formulas will convert to the same ANF, easily showing whether two formulas are equivalent for automated theorem proving. Unlike other normal forms, it can be represented as a simple list of lists of variable names—conjunctive and disjunctive normal forms also require recording whether each variable is negated or not. Negation normal form is unsuitable for determining equivalence, since on negation normal forms, equivalence does not imply equality: a ∨ ¬a is not reduced to the same thing as 1, even though they are logically equivalent. Putting a formula into ANF also makes it easy to identify linear functions (used, for example, in linear-feedback shift registers): a linear function is one that is a sum of single literals. Properties of nonlinear-feedback shift registers can also be deduced from certain properties of the feedback function in ANF. There are straightforward ways to perform the standard boolean operations on ANF inputs in order to get ANF results. XOR (logical exclusive disjunction) is performed directly: () ⊕ () ⊕ 1 ⊕ 1 ⊕ x ⊕ x ⊕ y y NOT (logical negation) is XORing 1: 1 ⊕ 1 ⊕ x ⊕ y x ⊕ y AND (logical conjunction) is distributed algebraically ( ⊕ ) ⊕ (1 ⊕ x ⊕ y) ⊕ (x ⊕ x ⊕ xy) 1 ⊕ x ⊕ x ⊕ x ⊕ y ⊕ xy 1 ⊕ x ⊕ y ⊕ xy OR (logical disjunction) uses either 1 ⊕ (1 ⊕ a)(1 ⊕ b) (easier when both operands have purely true terms) or a ⊕ b ⊕ ab (easier otherwise): () + () 1 ⊕ (1 ⊕ )(1 ⊕ ) 1 ⊕ x(x ⊕ y) 1 ⊕ x ⊕ xy Each variable in a formula is already in pure ANF, so one only needs to perform the formula's boolean operations as shown above to get the entire formula into ANF.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
CS-550: Formal verification
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u
MATH-115(b): Advanced linear algebra II
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux du sujet.
Show more