The first isolation of deoxyribonucleic acid (DNA) was done in 1869 by Friedrich Miescher. DNA extraction is the process of isolating DNA from the cells of an organism isolated from a sample, typically a biological sample such as blood, saliva, or tissue . It involves breaking open the cells, removing proteins and other contaminants, and purifying the DNA so that it is free of other cellular components. The purified DNA can then be used for downstream applications such as PCR, sequencing, or cloning. Currently, it is a routine procedure in molecular biology or forensic analyses. This process can be done in several ways, depending on the type of the sample and the downstream application, the most common methods are: mechanical, chemical and enzymatic lysis, precipitation, purification, and concentration. The specific method used to extract the DNA, such as phenol-chloroform extraction, alcohol precipitation, or silica-based purification. For the chemical method, many different kits are used for extraction, and selecting the correct one will save time on kit optimization and extraction procedures. PCR sensitivity detection is considered to show the variation between the commercial kits. There are many different methods for extracting DNA, but some common steps include: Lysis: This step involves breaking open the cells to release the DNA. For example, in the case of bacterial cells, a solution of detergent and salt (such as SDS) can be used to disrupt the cell membrane and release the DNA. For plant and animal cells, mechanical or enzymatic methods are often used. Precipitation: Once the DNA is released, proteins and other contaminants must be removed. This is typically done by adding a precipitating agent, such as alcohol (such as ethanol or isopropanol), or a salt (such as ammonium acetate). The DNA will form a pellet at the bottom of the solution, while the contaminants will remain in the liquid. Purification: After the DNA is precipitated, it is usually further purified by using column-based methods.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (27)
Self-attraction of DNA: Mediated Interactions
Discusses the self-attraction of DNA and its mediated interactions.
DNA separation: Methods and Techniques
Explores DNA separation methods, including gel and capillary electrophoresis, nanochannel sizing, and protein binding site observation.
Protein Structure Exploration
Explores protein composition, synthesis, purification, and analysis techniques for understanding protein structure and function.
Show more
Related publications (90)

Multi-well plate lid for single-step pooling of 96 samples for high-throughput barcode-based sequencing

Bart Deplancke, Daniel Migliozzi, Gilles Weder, Riccardo Dainese, Daniel Alpern, Hüseyin Baris Atakan, Mustafa Demir, Dariia Gudkova

High-throughput transcriptomics is of increasing fundamental biological and clinical interest. The generation of molecular data from large collections of samples, such as biobanks and drug libraries, is boosting the development of new biomarkers and treatm ...
Dordrecht2024

A field-capable rapid plant DNA extraction protocol using microneedle patches for botanical surveying and monitoring

Sebastian Maerkl, Nicolas Rémi Adam, Jonathan Selz

PremiseA novel protocol for rapid plant DNA extraction using microneedles is proposed, which supports botanic surveys, taxonomy, and systematics. This protocol can be conducted in the field with limited laboratory skills and equipment. The protocol is vali ...
WILEY2023

Achieving high hybridization density at DNA biosensor surfaces using branched spacer and click chemistry

Sandrine Gerber, Mounir Driss Mensi, Perrine Agnes Edith Robin, Alireza Kavand, Lucas Mayoraz

The COVID-19 pandemic has highlighted the necessity to develop fast, highly sensitive and selective virus detection methods. Surface-based DNA-biosensors are interesting candidates for this purpose. Functionalization of solid substrates with DNA must be pr ...
2023
Show more